基于GB3442-82的集成运放参数测试仪设计

最新更新时间:2010-03-16来源: 电子设计工程关键字:集成运放(IOA)  参数测量  GB3422-82  单片机(SCM)  FPGA 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  集成运放以其价格低廉、性能优越等特点在个人数据助理、通信、汽车电子、音响产品、仪器仪表、传感器等领域得到广泛应用。随着数字技术的不断进步和集成电路市场的发展.兼有模拟和数字集成电路的SOC或混合集成电路将越来越受重视。与此同时,集成运放参数的测定也将对研发人员和技术仪器提出更高的要求,传统的运放测试仪校准方案已不能满足市场特别是国防军工的要求.运放测试仪的校准面临严峻挑战。因此,提高运放测试仪的测试精度,保证运放器件的准确性是目前应解决的关键问题。

  2 系统方案论证

  2.1 信号发生器方案论证

  考虑到单片函数发生器的外接电阻电容对参数影响很大,因而产生的频率稳定度较差、精度低、抗干扰能力低,且不易控制;而采用数字锁相环频率合成技术,由于锁相环本身是一个惰性环节,锁定时间长,所以频率转换时间也会增加,同时频率受VCO可变频率范围的影响,频带不能做得很宽。这里采用直接数字频率合成技术(Direct Digital Frequency Synthesis,简称DDFS或DDS)。DDS以Nyquist时域采样定理为基础,在时域中进行频率合成,图1为其基本原理框图。DDS基于相位累加合成技术,在数字域中实现频率合成,可输出高精度的频率信号,频率范围大、精度高、控制性能好且易实现。DDS专用集成器件基于DDS原理,具有转换速度快、分辨率高、频带宽等特点,可输出稳定的高频信号,但不适合产生低频信号。因此系统中5Hz低频信号由FPGA内部的DDS提供。

基本原理框图

  2.2 测量控制电路方案论证

  为在同一电路中实现不同参数的分步测量及自动量程转换,需设计通断控制电路。因此,这里采用模拟开关。因存在导通电阻,在选通时该电阻加于电路,会带来测量误差;继电器导通电阻较小,但相对于模拟开关规模大、电路分布参数,容易引起闭环测试电路的寄生振荡;考虑到精度,系统选用继电器控制不同参数测试电路的自动转换,通过添加补偿电容来避免振荡,为避免输出波形失真,系统还采用三极管共发射极电路对继电器进行控制。2.3幅值检测方案论证方案1:数字方法。由A/D转换器采样后将数据送入FPGA进行峰值检测或有效值检测,该方式可提高精度和稳定度,且避免了模拟器件不稳定或漂移等因素的影响,但受 A/D转换器采样速率的限制,所处理的信号频率达不到很高。方案2:模拟方法。包括峰值检波和有效值检波。前者通过控制电容充放电速度实现,后者基于交流信号有效值定义式,采用模拟电路实现,典型有效值检测器件如AD637。系统在测量AVD、KCMR时,输出信号的交流分量频率为5 Hz,故采用方案1;测量增益带宽积BWG时,输出频率范围为40 kHz~4 MHz,故采用方案2。

  根据以上方案论证,系统总体框图如罔2所示。系统主要由信号发生、参数测试、测试电路控制和人机交互等模块组成,单片机和FPGA共同控制模块。5 Hz信号由FPGA内部DDS产生,扫频信号由AD9851产生;测量电路的输出结果经后级滤波、放大处理后由A/D转换器采样送至FPGA进行运算;单片机和FPGA通过继电器选择以测量电路和测量量程;FPGA提供键盘和显示器以实现人机交互;测量结果存储在RAM中,并能通过微型打印机打印出来。

系统总体框图

  3 理论分析与主要电路设计

  3.1 信号源的实现

  5 Hz信号产生的参考频率为fCLK=1 MHz,相位累加器的位数是32,频率控制字为21 475,其输出频率则为(106/232)×21475≈5.000 038 1 Hz,而相对误差的绝对值为(5.000 038 1-5)/5×100%≈0.000 762%。5 Hz信号对D/A转换速率要求不高,为提高精度,系统选用12位D/A转换器件MX7541。

  40 kHz~4 MHz扫频信号由DDS专用器件AD9851产生。通过对输出正弦波的频率进行步进控制可实现扫频输出。频率分辨率设为1 kHz,如果以1 kHz为频率步进值,则需要步进(4×106-40x103)/1 000=3 960次,而要求扫描时间小于等于10 s。扫描速度应大于等于10 s/3 960=2.525次/ms。考虑到实测器件的情况,为保证测量的可靠性,采用非等步长步进,即随着频率增加,步进量增加,在接近截止频率点时减小步进频率,保证频率分辨率为1 kHz。

  在AD9851输出级接截止频率为15 MHz的椭圆滤波器来抑制高频谐波干扰,并通过AD603构成的AGC电路和精密调整放大电路使输出有效值稳定在2 V。

  3.2 运放参数测试电路

  系统采用“被测器件一辅助运放”模式构成稳定的负反馈网络。使输出电压箝位于预置电压,从而将小电压、小电流的测量转换为伏特级电压的测量。根据VIO、IIO、KCMR、BWG等5个参数测量电路的相似性将其简化为一个标准测量电路模板.通过按键选择不同参数的测量电路,如图3所示。

 运放参数测试电路

  3.2.1 输入失调电压VIO、输入失调电流IIO的测量

  闭合S1、S3、S4、S12,S2→3、S11→3,测得辅助运放的输出电压为VIO,则有:

公式

  在重复VIO测量步骤的基础上再断开S3、S4,测得辅助运放的输出电压为VLI,则有:

公式

  在测量VIO时,Ri=100 Ω,Rj=61.6 kΩ,其精度均为0.3%,由Ri和RF造成的最大误差小于0.6%;在测量IIO时,应满足:

公式

  系统选取R=436 kΩ,IIO~(0,4μA),VIO~(0,40 mV),以上两个条件均能满足。

  3.2.2 差模开环交流电压增益AVD的测量

  闭合S1、S3、S4、S10、S12,S2→3、S11→1,设信号源输出电压为VS,测得辅助运放输出电压为VLO,则有:

公式

  AVD的测量误差在很大程度上取决于电路中R1、R2的匹配精度,若匹配误差为δ=(R1-R2)/R2,δ1=(Rf-Ri)/Ri,则单纯由电阻失配引起的相对误差为△A VD="20" log(δ+1),该系统占为0.6%。

  3.2.3 共模抑制比KCMR的测量

  闭合S1、S3、S4、S10、S12,S2→1、S11→3、S13→1,设信号源输出电压为VS,测得辅助运放输出电压为VIO,则有:

公式

  KCMR的测量误差在很大程度上取决于电路中待测运放两输入端电阻的匹配精度,若匹配误差为δ1,则单纯由电阻失配引起的相对误差为△KCMR=20log(δ1+1),δ1=δ。

系统软件流程

  4 系统测量与分析

  利用该系统测量OP07、μA741、LF256等,运放器件的参数可在FPGA显示器上显示,后果表明,该测试仪测量精度高,符合设计要求,其中表1是测量OP07结果。

测量OP07结果

  5 结束语

  该系统完成了对运放参数VIO(0~40 mV)、IIO(0~4μA)、AVD(60~120 dB)、KCMR的测量,(误差分别为1%和±2 dB),而且还实现了BWC的测量和自动量程转换功能,其中扫频信号的步进频率为1 kHz,电压有效值为(2±0.1)V。系统通过FPGA提供键盘和显示器等人机交互界面。能准确实现对测量方式的控制及相关信息的显示,且增加触摸屏控制和打印测量结果功能,具有较好的可重复性和参考性。另外,在系统中通过对硬件的处理,消除了因使用继电器由环路正反馈带来的自激效应,进一步提高了系统稳定性。

关键字:集成运放(IOA)  参数测量  GB3422-82  单片机(SCM)  FPGA 编辑:金海 引用地址:基于GB3442-82的集成运放参数测试仪设计

上一篇:静态工作点稳定性对射极输出器动态性能的影响
下一篇:宽带功率放大器的设计

推荐阅读最新更新时间:2023-10-12 20:16

对 X 参数非线性测量的意义的理解和认识
在早期的年代人们曾经一度使用各种仪表以及由这些仪表测量得到的各种测量结果拼合的信息来设计线性元器件和线性系统。这种设计方法很快就被使用分布参数 — S 参数的设计方法所取代。S 参数把使用多种仪表以及多种测量结果统一起来,使得人们能够只用一种仪表 — 矢量网络分析仪,就可以通过仪表与被测器件的一次连接测量出诸如增益、隔离度和匹配等参数的值。在过去的 40 多年里,S 参数一直占据着微波理论和技术全部基础中最重要的位置,它们涉及的是一些我们非常熟悉的测量的量,例如输入匹配 — S11,输出匹配 — S22,增益或损耗 — S21,以及隔离度 — S12,这些测量的量还可以很容易地植入设计电子产品所用的软件仿真工具中。在今天,S 参数
[测试测量]
对 X <font color='red'>参数</font>非线性<font color='red'>测量</font>的意义的理解和认识
基于NIOS II的频谱分析仪的设计与研制
频谱分析仪是微电子测量领域中最基础、最重要的测量仪器之一,是从事各种电子产品研发、生产、检验的重要工具。高分辨率、宽频带数字频谱分析的方法和实现一直是该领域的研究热点 。现代频谱分析仪是基于现代数字信号处理理论的频谱分析仪,信号经过前置预处理、抗混叠滤波、A/D变换、数字频谱分析等环节而得到信号中的频率分量, 达到与传统频谱分析仪同样的结果。 本设计完全利用FPGA实现FFT,在FPGA上实现整个系统构建。其中CPU选用Altera公司的Nios II软核处理器进行开发, 硬件平台关键模块使用Altera公司的EDA软件QuartusIIV8.0完成设计。整个系统利用Nios II软核处理器通过Avalon总线进行系统的控制。全文
[测试测量]
基于NIOS II的频谱分析仪的设计与研制
在选择合适的 SoC FPGA 时体系结构的重要性
在大部分嵌入式系统中,处理器和现场可编程门阵列(FPGA)完成最繁重的工作。处理器和 FPGA通常单独工作,如果两种技术能够一起出色的协同工作,将形成功能更强大的嵌入式计算平台。 在这些系统中,处理器一般提供高级管理功能,而 FPGA 完成严格的实时操作,大量的数据处理,或者处理器不太容易支持的接口功能。 SoC FPGA 器件在一个器件中成功集成了处理器和 FPGA 体系结构。将两种技术合并起来具有很多优点,包括更高的集成度、更低的功耗、更小的电路板面积,以及处理器和 FPGA 之间带宽更大的通信,等等。这一同类最佳的器件发挥了处理器与 FPGA 系统融合的优势,同时还保留了独立处理器和 FPGA 的优点。 与以
[嵌入式]
FPGA的嵌入式系统USB接口设计
摘要:设计基于FPGA的IP-BX电话应用系统,用于传统的电话网络(PSTN)与PC机之间的接口连接。USB2.0接口器件EZ-USB FX2 CY7C68013A-56工作在slave FIFO模式,为基于FPGA的嵌入式系统与PC机之间提供数据和命令通道,从而可满足PC机与FPGA之间数据与命令的高速传输,实现PSTN与PC机之间的电话通信。硬件调试结果表明系统工作稳定,通话质量满足要求。 通用串行总线USB(Universal Serial Bus)是应用于PC领域的接口技术,已得到广泛应用。USB2.0已成为目前电脑中的标准扩展接口。本系统设计的目的在于为公共交换电话网络(PSTN)和PC机之间提供
[嵌入式]
<font color='red'>FPGA</font>的嵌入式系统USB接口设计
如何用DSP和FPGA构建多普勒测量系统
  随着FPGA性能和容量的改进,使用FPGA执行DSP功能的做法变得越来越普遍。   许多情况下,可在同一应用中同时使用处理器和FPGA,采用协处理架构,让FPGA执行预处理或后处理操作,以加快处理速度。   传统上,大量的应用设计使用专门的数字信号处理(DSP)芯片或专用标准产品(ASSP)并通过信号处理算法来处理数字信息,滤波、视频处理、编码与解码、以及音频处理等仅仅是众多采用 DSP 的应用中的一部分而已。   现在,随着FPGA性能和容量的改进,以及可以在大多数DSP应用中看到的通用算术运算的效率的提高,使用FPGA执行DSP功能的做法变得越来越普遍。   在许多情况下,同一应用中同时使用处理器和
[模拟电子]
一种用于FPGA的改进算法弱化了方波重影
  0 引言   DDS(Direct Digital Frequency Synthesis)频率合成器能够很方便地输出任意波形 ,方波作为最常用波形之一,具有其特殊性。但输出的方波存在明显的重影现象直接影响了方波的质量。   1 方波重影出现的原因   假设系统时钟频率为200 MHz,以输出3 MHz方波为例,从模拟示波器观察到的结果如图1所示。        图1中存在明显的双边沿现象,且两条上升沿的间距为5 ns,刚好等于系统时钟的周期。这种现象可称为方波重影。   根据DDS的工作原理可知,相位序列具有周期性 .   在相位序列的一个周期内,相位累加器会溢出若干次,并且每次溢出后的残留量都不一样。当残留量足够大时,再
[电源管理]
一种用于<font color='red'>FPGA</font>的改进算法弱化了方波重影
提高FPGA设计效能的方案
随着FPGA密度的增加,系统设计人员能够开发规模更大、更复杂的设计,从而将密度优势发挥到最大。这些大规模设计基于这样的设计需求——需要在无线通道卡或者线路卡等现有应用中加入新功能,或者通过把两种芯片功能合并到一个器件中,减小电路板面积,或者针对新应用开发新设计。 这些不同的设计含有应用程序已有代码,或者是对延时要求较高的DSP。对于这类设计,综合工具可能无法优化设计,使其达到最优,导致关键通路出现较长的延时。关键通路延时较长的原因在于逻辑综合工具依靠估算的延时来综合设计。 这些延时较长的关键通路带来了时序逼近问题,导致性能劣化,迫使设计人员重新编写RTL代码以改进这些延时较长的关键通路。此外,
[嵌入式]
提高<font color='red'>FPGA</font>设计效能的方案
Actel混合信号FPGA获国际工程联合会认可
Actel公司日前宣布其混合信号FPGA(即Actel Fusion可编程系统芯片(PSC))荣获国际工程联合会(IEC)颁发的半导体和IC类别的DesignVision大奖。 Actel Fusion系列器件将可编程模拟、高达 8Mbit的高性能Flash内存,以及具有150万系统门的系统内编程(ISP)FPGA架构集成在单片PSC上。全新Actel Fusion PSC集成了核心模拟构件,因此适合多种应用采用,范围涵盖工业、医疗、军用/航天、通信、消费电子和汽车电子。 Actel总裁兼首席执行长John East称:“我们对于能够协助客户的机会非常重视,不单要满足其特定的设计要求,而且将可编程逻辑的优势引入那些过去
[焦点新闻]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved