移动机器人的多传感器测距系统设计

最新更新时间:2010-08-11来源: 传感器与微系统关键字:移动机器人  超声波传感器  红外传感器  测距 手机看文章 扫描二维码
随时随地手机看文章

一、引言

    在自主移动机器人的实时避障和路径规划过程中,机器人须依赖于外部环境信息的获取,感知障碍物的存在,测量障碍物的距离。目前,机器人避障和测距传感器有红外、超声波、激光及视觉传感器。激光传感器和视觉传感器价格贵,对控制器的要求较高,因而,在移动机器人系统中多采用红外及超声波传感器。

多数系统采用单一传感器进行信息采集,但超声波传感器因为存在测量盲区的问题,测距范围一般在30300cm之间;而红外测距传感器的探测距离较短,一般在几十厘米之内,它可以在一定程度上弥补超声波传感器近距离无法测量的缺点。因而,本系统采用多路红外和超声波传感器进行距离信息的测量和采集。

二、测距原理及方法

(一)超声波传感器

    超声波是指谐振频率高于20 Hz的声波,频率越高反射能力越强。超声波传感器价格低廉,其性能几乎不受光线、粉尘、烟雾、电磁干扰的影响,并且,金属、木材、混凝土、玻璃、橡胶和纸等可以反射近乎100%的超声波,因而,可以用来探测物体。

超声波测距的方法为回声探测法,发射换能器不断发射声脉冲,声波遇到障碍物后反射回来被接收换能器接收,根据声速及时间差计算出障碍物的距离。距离与声速、时间的关系表示为

式中:s为与障碍物间的距离,m; c为声速,m/st为第一个回波到达的时刻与发射脉冲时刻的时间差,s

c与温度有关,空气中声速与温度的关系可表示为

式中c为声速,m/s; θ为环境温度,℃。

(二)提高超声波测距精度的方法

1.采用合适的频率和波长:使用超声波传感器测距,频率取得太低;外界杂音干扰较多;频率取得太高,在传播过程中衰减较大。并且,超声波传感器在测量过程中容易产生盲区,接收端易接收到泄漏波。改善这一缺点,须减少发射波串的长度,增高发射波频率。但发射波串长度过短会使得发射换能器不能被激振或激振达不到最大值;发射波频率过高则衰减大,作用距离下降、有试验表明:使用40 kHz的超声波,发射脉冲群含有10-20个脉冲,具有较好的传播性能。

2.提高系统的计时精度也可提高超声波的测距精度,计时器的计数频率越高,则由于时间的量化误差所引起的测距误差就越小。

3.对系统电路的时间延迟进行补偿可以减小测距误差,提高测距精度。延迟时间

式中△t为延迟时间,s;s1,s22个已知的测量距离,mt1t2为对应的测量时间,s

      (三)红外避障传感器

红外线是介于可见光和微波之间的一种电磁波,因此,它不仅具有可见光直线传播、反射、折射等特性,还具有微波的某些特性,如较强的穿透能力和能贯穿某些不透明物质等。红外传感器包括红外发射器件和红外接收器件。自然界的所有物体只要温度高于绝对零度都会辐射红外线,因而,红外传感器须具有更强的发射和接收能力。

红外传感器的的测距基本原理为发光管发出红外光,光敏接收管接收前方物体反射光,据此判断前方是否有障碍物。根据发射光的强弱可以判断物体的距离,它的原理  是接收管接收的光强随反射物体的距离而变化的,距离近则反射光强,距离远则反射光弱。

目前,使用较多的一种传感器-红外光电开关,它的发射频率一般为38 kHz左右,探测距离一般比较短,通常被用作近距离障碍目标的识别。本系统采用的即为此种传感器。

(四)红外测距的缺陷

受器件特性的影响,一般的红外光电开关抗干扰性差,受环境光影响较大;并且,探测物体的颜色、表面光滑程度不同,反射回的红外线强弱就会有所不同。

三、硬件系统构成

(一)系统组成

该测距系统由单片机、超声波发射接收电路、红外发射接收电路、数码显示电路及串口通信电路等模块组成,见图1。控制核心为凌阳16位单片机SPCE061 A,芯片上集成有216位可编程定时器/计时器,14个中断源,32位通用可编程输人/输出通道,7通道10A/D转换器。

移动机器人的前方、左方、右方各安装一套超声波及红外传感器,使机器人能够感知3个方位的障碍信息。单片机在接收到传感器的信息后,将传感器的信号转换为距离信息,在LED数码管上显示,并通过串口RS - 232接口与上位PC机通信,传输距离信息。

(二)超声波传感器电路

凌阳单片机的I/O9-I/O11口接三路超声波发射电路,I/O3-I/O5接三路超声波接收电路。单片机产生的40 kHz信号由I/O输出,经反相器4049B组成的升压放大电路,最后,由超声波发射换能器UCM40T发射;声波遇到障碍物返回,被接收换能器UCM40R接收,信号经OP07组成的两级放大电路放大,通过锁相环音频译码器LM567  频,滤除干扰信号,最后,通过I/O口输入单片机。单片机通过声波的传输时间计算障碍物距离。

(三)红外传感器电路

凌阳单片机的I/O0I/O6可作为10A/D转换器。本系统中,凌阳单片机的I/O0I/O2口作为A/D转换器使用,I/O6I/O8接三路红外发射电路,I/O0I/O2接三路红外接收电路。单片机I/O口输出高电平时与红外发光管TLN205导通,发射红外光;光波在遇到障碍物后反射,被红外接收管TPS708接收,产生一个与光强相对应的电流,电流经LM358组成的两级放大电路放大后,输出一个03V的模拟电压,经A/D口输人单片机。单片机通过  电压的大小计算、判断障碍物的距离。

四、软件设计

    单片机SPCE061 A选用系统时钟频率fosc20.480MHzCPU时钟频率(CPUCLK)为fosc/210. 24 MHz,时钟源A选用频率32768 Hz,时钟源B选用频率1 Hz,,SPCE061A提供216位的定时/计数器:TimerATimerBTimerA的时钟源由时钟源A和时钟源B进行与操作形成;TimerB的时钟源仅为时钟源A

    40 kHz的超声波脉冲为高低电平各占12.5μs的方波,CPU时钟计数延迟123个指令周期即为12.5μs。单片机通过不断的交替产生12.5μs的高低电平即可产生40 kHz的脉冲信号,每次发射20个脉冲的脉冲群,持续0.5 ms,脉冲发射、间隔时间至少20 ms,从I/O口输出。系统选用定时器A作为产生20 ms的定时中断,选用定时器B作为超声波计数器。

    由于超声波传感器存在测量盲区,因而,在程序设计中,将远于30 cm的测距由超声波传感器完成,30 cm以内由红外传感器完成。

    红外测距过程中,选用定时器A产生0.1S的中断进行A/D采样,并将采样的电压值转换为距离信息。

主程序中,首先,进入红外探测子程序,如果探测到障碍物,则进人数据传输、显示及运动控制子程序;没有探测到障碍物,则进入超声波探测子程序。超声波探测到障碍物,则进人数据传输、显示及运动控制子程序,没有探测到障碍物,则循环进行红外探测。图2、图3分别为红外及超声波探测子程序。

五、测量结果

试验过程中,采用同大小、质地、颜色的障碍物进行测量。试验表明:系统在0200 cm的范围间测距精度在1%之内,能够较为准确对障碍物进行测距。在30 cm以内的测距由红外传感器完成,30200 cm之间的测距由超声波传感器完成,试验结果见表1

六、结束语

    本文研究了一种低成本、低功耗、高效能的移动机器人侧距系统,采用超声波和红外传感器的多传感器系统,有效地解决了单一传感器测距系统中测量盲区的缺陷问题;并且,采用3组传感器组装配在机器人的3个不同位置,使得机器人可完成3个不同方位的测距任务。
关键字:移动机器人  超声波传感器  红外传感器  测距 编辑:金海 引用地址:移动机器人的多传感器测距系统设计

上一篇:基于多传感器信息融合的移动机器人导航综述
下一篇:传感器在多关节机器人系统实时避障中的应用

推荐阅读最新更新时间:2023-10-12 20:17

5G工厂在路上:移动机器人车间内“自主”穿行开始
制造迈向智造之路上,无线技术难以在工业互联网中推广是其中的一个痛点。 “当前的工业生产场景中,无线技术只占工业互联网的6%,其中Wi-Fi占3%。工业网络链接还是现场总线和工业以太网为主。”深圳5G产业联盟专家委员会的荣乐天博士在今年上海工博会期间一场关于5G+工业互联网的会议上这样指出。 而无线技术无法在工业互联网广泛推广,主要限制于Wi-Fi、ZigBee、蓝牙技术的能力(如稳定性、速率、扩展性等)。也正因如此,很多智能化和工业应用难以在车间真正落地推广。其中在工业生产场景中有大量需求的移动机器人应用就是其中一例。而5G的商用普及有望直击这些工业领域的应用痛点。 5G解决工业物流痛点 移动机器人迎高增长潜力 以一家消费电子产品
[手机便携]
5G工厂在路上:<font color='red'>移动机器人</font>车间内“自主”穿行开始
单片机应用系统开发实例
1. 智能移动机器人系统的结构与功能 智能移动机器人控制系统的设计与开发主要采用模块化组合设计,采用ATMEL公司的ATMEGA16单片机芯片,同时配合ICCAVR7.01软件开发环境,支持C语言的程序设计。 智能移动机器人硬件主要由直流电机驱动模块、发生器模块、串口通信模块以及无线遥控、循线、寻光、避章等模块组成。 图1 智能移动机器人控制系统硬件框图 其主要功能为: ① 红外遥控功能 红外通信采用38K载波传输方式,利用长虹电视机遥控器作为红外遥控的发射装置,利用串口以及串口调试助手,找出遥控器控制键(前进、后退、左转、右转以及停止)的编码,通过编程实现控制。 ② 避
[单片机]
单片机应用系统开发实例
自触发脉冲激光测距飞行时间测量研究
相对于相位式激光测距等连续波测距方法,脉冲激光测距结构简单,测程远,测量速度快,因而得到广泛的应用。但是脉冲激光测距的缺点在于单脉冲测量精度不高,目前,单脉冲激光测距精度在实际应用中只能达到厘米量级,难以达到毫米量级。要达到更高的测量精度,只能通过对多次单脉冲激光测距结果求平均值的方法来获取,但是这样就会增加测量所需要的时间,降低了测量速度,不仅不便于使用,也限制了其应用的范围。 为了更好的解决脉冲激光测距测量精度与测量速度之间的矛盾,提出一种新型的脉冲激光测距方法,自触发脉冲激光测距法。自触发脉冲测距方法,可以有效克服激光测距中存在的提高测距精度和缩短测量时间两者的矛盾。该方法比起传统脉冲重复频率方法具有更高的测量精度和更
[测试测量]
自触发脉冲激光<font color='red'>测距</font>飞行时间测量研究
基于红外传感器的楼宇人数统计系统的设计
0 引言 随着现代社会和科学技术的迅速发展,红外技术已经为大家所熟知。由于红外线是不可见光,有很强的隐蔽性和保密性,已经在现代科技、国防和工农业等领域获得了广泛的应用,给人们日常生活和公共安全带来了极大的便利。本文介绍的,就是以红外传感器为基础的一套楼宇房间人数统计系统。鉴于现有的各种人数统计系统的种种不足或限制,本文设计了一套实时、可行的计数设备。它以热释电红外传感器为基础,通过对外围电路的设计,能识别人进来(向左运动)或者出去(向右运动)的方向,进而产生不同的通道信号去触发相应的控制电路,通过单片机编程,连接计算机,就可以对楼宇人数进行实时准确的监控。 1 系统总体设计原理 该系统的总体结构框图如图1所示:通过RE200B热释电
[嵌入式]
一种数字跟踪测距模块的设计与实现
  0 引 言   雷达最主要的功能之一就是对目标距离的跟踪和测量。在此首先阐述了雷达测距跟踪的基本原理,介绍一种脉冲雷达数字 跟踪测距 模块的设计及实现的新方法,并且叙述了该模块研制的理论基础。该模块利用回波信号相对于发射脉冲的延迟时间量进行目标距离的测量,针对跟踪脉冲的特点,对目标回波延迟时间计数值和跟踪脉冲计数值进行比较,利用 数字信号处理 的方法把比较的结果反馈到跟踪控制器,实现了脉冲雷达的距离跟踪,具有测距精度高、测距稳定、抗干扰能力强及电路简便等优点。该模块能够对目标进行手动跟踪测距和自动跟踪测距。   1 该模块的理论设计   一般雷达数字跟踪是通过时间鉴别器鉴别出回波信号与跟踪脉
[测试测量]
基于C8051的新型超声波测距系统
概述: 在工业测距场合中,由于工作要求和复杂环境常常采用非接触测距的方法。激光、红外线和超声波是非接触测距中较常采用的测量介质。 (1)激光测距:精度高,操作简单,但是受环境的影响比较大,且系统检测不易维护,价格也比较昂贵。 (2)红外测距:易受环境光照度和光线色彩的影响,而且测量精度不高。 (3)超声波测距:超声波为机械波,具有不受光线影响,不受电磁干扰,成本低等特点,能够定点和连续测量物位,在有灰尘、烟雾、有腐蚀等恶劣环境下具有较好的适应能力,广泛应用于物位测量、机械手控制、倒车雷达、机器人避障以及其他一些工业现场等方面。 近些年来,人们对超声测距进行了很多的探讨和研究。目前所研究的超声波测距传感器测距范围
[单片机]
基于C8051的新型超声波<font color='red'>测距</font>系统
移动机器人系统解决方案服务商松灵机器人完成A轮融资
近日,移动机器人系统解决方案服务商松灵机器人完成A轮融资,投资方为五源资本、红杉资本中国、祥峰投资Vertex、香港未来科技基金。 据了解,松灵机器人是全球领先的机器人底盘制造商和移动机器人系统解决方案服务商。 目前,松灵机器人已经拥有多款适用于不同地形的室内外移动机器人底盘,在载重、续航、速度、运动模式等不同需求场景下实现全矩阵覆盖。 同时,松灵机器人还推出了自动驾驶解决方案,平行驾驶解决方案,机器人科研教育套件等移动机器人底盘配套产品,帮助客户在自动驾驶、机械控制、计算机、车辆等领域完成实验验证。据不完全统计,松灵机器人所属领域智能硬件本年度共有60笔融资。
[机器人]
GGII重磅分享移动机器人行业数据
2023年3月20日下午3点 , 【高工移动机器人】将以“ 2022年中国移动机器人行业数据发布 ”为主题开展直播活动,届时由 高工机器人产业研究所(GGII)高级分析师蔡庆伟做深度行业分享。 本次直播,我们将围绕以下三个话题展开: 1. 2022年移动机器人市场整体表现如何? 2. 2023年是否迎来“开门红”? 3. 移动机器人新的增长点在哪? 扫描下方二维码,即可预约和观看直播。 嘉宾介 绍 蔡庆伟 ,高工机器人产业研究所(GGII)高级分析师,专注于移动机器人领域的研究员,在该领域内拥有多年的经验和研究成果。更多行业交流分享, 添加微信号:
[机器人]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved