什么是自举电路?增大输入阻抗的方法

最新更新时间:2011-01-19来源: 互联网关键字:自举 手机看文章 扫描二维码
随时随地手机看文章

在电路设计过程中,常常可以利用自举电容构成的自举电路来改善电路的一些性能指标,比如增大电路的输入阻抗、提高电路的增益以及扩大电路的动态范围等等,在这里,我举一个自举电路的例子来详细说明它是如何增大电路的输入阻抗的。

一个很普通的原理图如下,

在上图中,为了使得运放在静态时能够正常工作,必须得在同相输入端与地之间加上一定阻值的电阻。经过简单分析可知这里引入的是一个电压串联负反馈,熟悉运放工作原理的人一眼就可以看出这个电路的输入电阻为:


很显然,这样的输入电阻相对而言实在过小,图中放大电路因此从信号源索取的电流就会相应很大,信号源内阻的压降随之增大,信号电压损失自然也就越大。所以,我们得想办法把它的输入电阻给提高一下,这时,我们可以设置一个自举电路的形式来有效的解决这个问题,解决办法如下图所示:

仅仅多加入了一个电容器,这个电路的输入电阻就“今非昔比”了。利用瞬时极性法可以判断出,电路中除了通过R4接反向输入端引入一个负反馈外,还通过R1接同相输入端而引入了一个正反馈,此时,R2和R3两个电阻并联在一起了。需要说明的是,这里电容(C1、C2)的选取值是比较大的,它们相对于交流信号来说相当于短路。正反馈的结果使得输入端的动态电位随之升高,也就是这种通过反馈使得输入端的动态电位升高的电路,称之为“自举电路”。

由于电容器C2很好的“通交隔直”特性,使得R1两端的压降即为(uP-uN),此时通过电阻R1的电流为:


我们再来看看这个电路的输入电阻情况,可得出如下方程式:


显而易见,对于该运放来说,由于电路中引入了深度负反馈,因此uP、uN几乎是相等的,那么Ri就会趋于极大值了,输入电阻也就得到了大幅度地提高,该电路的性能指标也因此得到了良好的改善。

本文结论:由此分析可知,在阻容耦合放大电路中,常常可以在引入负反馈的同时,引入合适的正反馈,以此提高电路的输入阻抗,来有效改善电路的性能指标。

关键字:自举 编辑:冀凯 引用地址:什么是自举电路?增大输入阻抗的方法

上一篇:模拟电子——自举电路增大输入阻抗的方法
下一篇:业界首款商用芯片级原子钟(Symmetricom)

推荐阅读最新更新时间:2023-10-12 20:18

ADSP-218X的IDMA接口自举设计
摘要:介绍ADSP-218X系列DSP芯片的IDMA接口的自举设计与应用。硬件方面介绍ADSP-218X的IDMA接口特点以及它与主机的连接方式;软件方面介绍如何DSP的程序与主机程序代码结合起来,并由主机通过IDMA接口与ADSP-218X下载程序。此种方法可简化系统设计 ,降低成本。 关键词:DSP ADSP-218X IDMA 主机 自举 随着DSP芯片技术的发展,其种类和型号日益增多。ADI公司推出了ADSP-218X系列16位定点DSP,它的IDMA接口极具特色。 1 IDMA接口介绍 IDMA接口是一个并行的I/O接口, 主机可通过IDMA接口为DSP下载程序、读/写DSP的内部存储器。下面简称ADSP-21
[应用]
自举电路如何把电压一步步顶上去?
自举电路如何把电压一步步顶上去的? +5V_ALWP电压通过D32的1脚对C710、C722、C715、C719开始充电,充电完毕后电路状态如上图显示(二极管压降忽略不计)。 此时的+15V_ALWP,实际电压为5V 1由于电容的两端电压不能突变,此时C715两端的电位为左边5V,右边10V(C715的电压依然是10V-5V=5V),然后电流经过D35的2引脚,对C719电容充电,充电后C719的电压升到10V。 2在上述1发生的同时,Y输出的第一次高电平5V也对C710充电。同样电容两端电压不能突变,所以C710两端的电位为左边5V,右边10V(C710的电压依然是10V-5V=5V)。然后电流经过
[电源管理]
使用自举积分电路的精密电流源设计
如图1所示的普通电流源的精确度不低于1%,而且对温度不太敏感(温度系数低于5×10 -5/℃)。该电路有较高的输出阻抗和较宽的电压允许范围(4.3~34V)。它采用电压参考集成电路IC1及电阻R1来产生一个稳定的电流源,并符合表达式ISOURCE=VREF/R1+IC1的对地电流。 IC1的精确度扩展到5.5V供电电压极限之外(CMOS)。这归功于采用由IC2、R2及C2组成的自举积分电路,它能保持IC1的输入在允许范围之内,因而一个符合IC2的宽供电范围的精密电流源产生了。     IC2是为了保持IC1的输
[网络通信]
IPM自举电路设计过程中的关键问题研究
  通常IPM模块应有四路独立 电源 供电,下桥臂三个 IGBT 控制电路共用一个独立电源,上桥臂三个IGBT控制电路用三个独立电源。对于小 功率 IPM,可以由自举电路将其他三路电压进行自举而得到三个独立电源[1]。IPM模块通过将功率器件、 驱动 电路和保护电路高度集成在一块很小封装基板上,使得功率模块应用单一电源供电成为可能。   为了简化设计,驱动电路已普遍采用单一控制 电源方案 。使用单一电源,必须满足两个要求:一是保证控制电源能够为上桥臂功率器件提供正确的门极偏置电压;二是保证直流母线上的高压不致串到控制 电源电路 而烧坏元器件。通常使用自举电路法来实现IPM模块的单一电源供电。   实现自举有两个关键问题:一
[电源管理]
IPM<font color='red'>自举</font>电路设计过程中的关键问题研究
可在线更新应用程序代码的DSP自举模块
针对现有DSP自举模块普遍存在程序代码更新不便的缺陷,提出了一种可便捷高效地在线更新用户应用程序代码的DSP自举模块。该模块由基于LabVIEW的图形用户界面(GUI)软件与C8051F340单片机构成。GUI软件完成DSP应用程序代码的格式转换,并通过驱动USB将转换完成的程序代码传送给C8051F340。C8051F340通过其片上USB外设接收DSP程序代码并存储于片上FLASH中,同时借助标准串行总线控制DSP完成应用程序代码的自举操作。该模块采用在线方式,可一键实现DSP应用程序代码的更新升级与自举操作。 TMS320VC54x系列DSP作为一种低功耗高速处理器在消费电子、通信等领域应用广泛 。通常为实现DSP程序
[电源管理]
可在线更新应用程序代码的DSP<font color='red'>自举</font>模块
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved