长尾式差分放大电路分析

最新更新时间:2011-02-21来源: 互联网关键字:差分放大电路 手机看文章 扫描二维码
随时随地手机看文章

长尾式差分放大电路分析

长尾式电路:如图所示为典型的差分放大电路,由于Re接负载电源-VEE,拖一个尾巴,故称为长尾式电路。

电路参数理想对称:Rb1=Rb2=Rb,Rc1=Rc2=Rc;T1管与T2管的特性相同,β1=β2=β,rbe1=rbe2=rbe;Re为公共的发射极电阻。

1.静态分析

当输入信号uI1=uI2=0时,电阻Re中的电流等于T1管和T2管的发射极电流之和,即

由于UCQ1=UCQ2,所以uO=UCQ1-UCQ2=0。 

2.对共模信号的抑制作用
利用电路参数的对称性抑制温度漂移:当电路输入共模信号时,如下图所示,基极电流和集电

利用发射极电阻Re对共模信号的抑制:利用Re对共模信号的负反馈作用,Re阻值愈大,负反馈作用愈强,集电极电位的变化愈小,差分放大电路对共模信号的抑制能力愈强。但Re取值不能过大,它受电源电压VEE的限制。
共模放大倍数Ac:定义为

 

由于E点电位在差模信号作用下不变,相当于接“地”;又由于负载电阻的中点电位在差模信号作用下也不变,也相当于接“地”,因而RL被分成相等的两部分,等效电路如图(b)所示。

差模放大倍数Ad:定义为

由此可见,差分放大电路电压放大能力只相当于单管共射极放大电路。差分放大电路是以牺牲一只管子的放大倍数为代价,换取了低温漂的效果。

输入电阻

共模抑制比KCMR:考察差分放大电路对差模信号的放大能力和对共模信号的抑制能力。

其值愈大,电路性能愈好。在电路参数理想对称的情况下,KCMR=∞。

关键字:差分放大电路 编辑:神话 引用地址:长尾式差分放大电路分析

上一篇:为MAX13330/MAX13331汽车耳机放大器添加插孔检测
下一篇:集成运放电路中有源负载放大电路的分析与计算方法

推荐阅读最新更新时间:2023-10-12 20:20

集成运放的非线性失真分析及电路应用
   0 引言   运算放大器广泛应用在各种电路中,不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就能实现不同的电路功能。集成运放将运算放大器和一些外围电路集成在一块硅片上,组合成了具有特定功能的电子电路。集成运放体积小,使用方便灵活,适合应用在移动通信和数码产品等便携设备中。   线性特性是考查具有放大功能的集成运放和接收射频前端电路的一个重要参数,并且线性范围对集成运放的连接方式也有很大影响。集成运放的线性范围太小,就会造成输出信号产生多次谐波和较大的谐波功率,严重地影响整个电路的功能。基于集成运放的非线性分析,可以发现造成电路非线性失真的原因,并且在
[模拟电子]
差分放大电路的四种接法
1.双端输入单端输出电路 电路如右图所示,为双端输入、单端输出差分放大电路。由于电路参数不对称,影响了静态工作点和动态参数。 直流分析: 画出其直流通路如右下图所示,图中 和 是利用戴维宁定理进行变换得出的等效电源和电阻,其表达式分别为: 交流分析: 在差模信号作用时,负载电阻仅取得T1管集电极电位的变化量,所以与双端输出电路相比,其差模放大倍数的数值减小。 如右下图所示为差模信号的等效电路。在差模信号作用时,由于T1管与T2管中电流大小相等方向相反,所以发射极相当于接地。 输出电压 一半。如果输入差模信号极性不变,而输出信号取自T2管的
[模拟电子]
<font color='red'>差分放大电路</font>的四种接法
改进型差分放大电路
改进型差分放大电路 在差分放大电路中,增大发射极电阻Re的阻值,可提高共模抑制比。但集成电路中不易制作大阻值电阻;采用大电阻Re要采用高的稳压电源,不合适。如设晶体管发射极静态电流为0.5mA,则Re中电流为1mA。当Re为10kΩ时,电源VEE的值为10.7V。在同样的静态工作电流下,若Re=100kΩ,VEE的值约为100V。 为了既能采用较低的电源电压,又能采用很大的等效电阻Re,可采用恒流源电路来取代Re。晶体管工作在放大区时,其集电极电流几乎仅决定于基极电流而与管压降无关,当基极电流是一个不变的直流电流时,集电极电流就是一个恒定电流。因此,利用工作点稳定电路来取代Re,就得如右上图所示电路。 恒流源电路
[模拟电子]
改进型<font color='red'>差分放大电路</font>
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved