提出移相全桥DC/DC变换器闭环系统设计方案,基于PWM控制器件UCC3895设计一个双闭环控制系统,该系统采用电压外环和电流内环的控制方式,在电压环中引入双零点、双极点的PI补偿,电流环中引入斜坡补偿,结合实应用对闭环系统进行实验测试,结果表明所设计的闭环系统动态响应快,稳定性好。
随着我国电源行业的发展,在中大功率应用场合,采用PWM控制技术的移相全桥DC/DC变换器越来越受到人们的关注,随着PWM控制技术逐渐向高频化方向发展,全球各大集成电路生产商竞相研制出各种新型的PWM控制器件,其中TI公司推出的UCC3895是一款具有代表性的移相全桥控制器件。该器件既可以工作于电流模式也可以工作于电压模式,又可以为谐振零电压开关提供高频、高效的解决方案,具有广阔的应用前景。这里基于UCC3895设计了移相全桥DC/DC变换器的双闭环控制系统,并结合实际应用对该系统进行了实验测试。
1 移相全桥DC/DC变换器闭环系统工作原理
移相全桥DC/DC变换器闭环系统结构框图如图l所示。
直流输入电压经过全桥逆变、高频变压器降压、输出侧整流滤波得到所需的直流电压。四路PWM波配置为两组,PWMl、PWM2为一组,用来控制全桥逆变模块的超前臂;PWM3、PWM4为另一组,控制滞后臂。PWMl与PWM2互补,PWM3与PWM4互补,可通过UCC3895设置合适的死区时间。该闭环控制电路采用峰值电流模式,外环电压调节器的输出作为电流内环的基准,在电流环中对采样的电流进行斜坡补偿,以保证占空比大于50%的时候,系统仍能稳定工作。电流环的输出作为调制信号,通过脉宽调制电路、移相电路、隔离驱动电路实现对系统的闭环控制。
2 闭环控制电路设计
2.1 控制模式
闭环系统采用恒定导通时刻峰值电流控制方式,可以实现逐个脉冲控制,动态响应速度快,稳定性好,并且易于实现限流及过流保护。工作原理框图如图2(略)所示。
外环误差放大器输出的误差放大电压Ue与外加的补偿锯齿波Ux合成倒锯齿波Uc作为内环PWM比较器的基准,当开关管电流检测信号Us的峰值达到Uc时,触发器翻转,开关管关断,从而减小输出电流翻。
2.2 硬件电路设计
控制部分硬件电路如图3所示。电压外环误差放大器采用新型光隔离误差放大器FOD2741,将UCC3895的引脚l(EAN)和引脚2(EAOUT)连接在一起,使内部的误差放大器构成电压跟随器,跟踪PI调节器输出的误差电压,并将其输入至内部PWM比较器的同相输入端,作为电流环的基准。
图3中,通过R5和R6设置输出取样电压,R5、R6与输出电压Vout满足:
R1和R7控制光耦的增益,C1、C2、C3和R1、R2、R3与FOD2741组成双零点、双极点的PI补偿网络。
在电流内环中加入斜坡补偿以保证系统的稳定性。斜坡补偿信号以电压跟随的形式,从RC振荡器中引入,其中加入上拉电阻R8为补偿的锯齿波提供直流偏压,解决启动或轻载时UCC3895输出波形的不对称问题。图中电流检测信号Is经过I-V变换电路转换成电压信号。根据叠加原理与引入的斜坡补偿信号叠加送入UCC3895的引脚3(RAMP),作为内部PWM比较器的反相输入。通过内部限流比较器及过流比较器实现逐周期限流及过流保护,当2 V2.5 V时,进入过流保护模式。
3 实验结果
将该控制系统应用于一台1.5 kW的电源中,设计参数如下:输入电压为直流144 V,输出14 V直流电压,高频变压器原、副边匝数比为15:2,开关频率为50 kHz,输出滤波电感为22μH,滤波电容为2 820μF,负载为0.14 Ω。补偿网络参数为:R1=l kΩ、R2=68 Ω、R3=40 Ω、C1=1.2 nF、C2=47 pF、C3=82 nF。在移相控制占空比的过程中,全桥逆变器的驱动波形及高频变压器副边的输出波形如图4所示。
4 结束语
本文基于UCC3895设计了移相全桥DC/DC变换器双闭环控制系统,其中加入补偿校正环节,使系统在交越频率处的相位裕度大于45°,从而达到稳定状态。结合实际应用对该系统进行实验测试,结果表明,系统动态响应快,稳定性好。
上一篇:增强型DC/DC隔离变压器
下一篇:降低设计复杂度并减少设计时间的ΔΣ ADC电路
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 有奖直播|无线技术改变智能生活
- 2020-2021年安森美和安富利物联网创新设计大赛
- 如何用3个关键步骤,来确保下一代设计安全性,深入解读嵌入式设备DeepCover加密控制器,看视频答题赢好礼!
- 趣味电子技术史话栏目开播啦!第一集:白炽灯到底是谁发明的?
- “六一”特辑:坛子里的宝宝们~
- Microchip 有奖直播|满足汽车电池管理系统 (BMS) 不断发展的安全标准
- 有奖活动|泰克半导体材料与器件测试技术【热门应用篇】
- 更新个人资料赢惊喜大礼
- TE 智能电表特训营,产品、技术、市场全解锁!
- 4月TI两场EP直播,都挺好:超声气体流量计量创新方案+SimpleLink平台小鲜肉CC13X2/CC26X2专场