随着DTMB应用逐渐普及,城市地面无线信号传输的复杂性开始体现出来,对接收芯片也提出了更高的要求。作为DTMB接收机中最为关键的部分,接收芯片的性能直接决定了整机的接收效果和地面数字电视的普及。杭州囯芯于2008年3月率先推出国内第一款融合DTMB单载波/多载波以及有线数字电视的三模解调接收芯片,已经广泛应用在香港、杭州、荆门、湖南等地市场,对如何设计符合国内接收环境的芯片有着足够的经验和充分的理解。
DTMB标准的优势
DVB-T作为世界范围内应用最广的地面数字电视广播标准,从诞生到现在已有13年的历史,也是我国在提出DTMB标准前各地采用最多的地面数字电视标准。虽然DVB-T的技术非常成熟,但近10年来数字电视接收的要求与当时相比已经有了较大改变,加上大规模集成电路产业也经历了飞速的发展,使得更多先进的技术可以应用在接收芯片中。DTMB是新一代的数字电视传输标准,与DVB-T相比具有以下优势:
1、更高的频谱利用率。DTMB采用TDS-OFDM的调制方式,无需利用导频来进行信道估计,和DVB-T相比频谱利用率提高了约10%,可在同样传输带宽下发送更多的电视节目。
2、更好的信号覆盖能力。地面数字电视采用了无线的信号传输方式,容易受到信号衰减以及其他无线信号的影响。DTMB中FEC(前向纠错码)是LDPC(低密度校验矩阵码)与BCH码的组合,与DVB-T的卷积码和RS码组合相比,具有更低的信噪比门限,因此极大的提高了相同发射功率下的信号覆盖率。
3、更好的移动接收能力和抗干扰能力。DTMB的多载波模式子载波间隔相当于DVB-T的4K模式(应用于DVB-H中),从信道估计的角度来看,其符合奈奎斯特准则的最大理论抗多普勒频偏能力在900Hz左右,以704MHz的信号频率来折算,可达1300多公里的理论时速。另外,因为拥有最大为250ms的交织深度,也大大提高了DTMB的抗突发干扰和阴影衰落能力。
DTMB标准的不足
与DVB-T标准相比,DTMB标准的不足之处在于,DVB-T采用的循环前缀结构使其能对抗长达224?s的回波干扰,而DTMB的多载波模式最多只能到125?s(帧模式3)。从DTMB帧头的PN序列特征分析,只有在回波长度小于57.4?s(对应距离为17.2Km)时才能保证接收性能处于最优的状态。如果回波长度大于57.4?s,信道估计虽然有最大20dB的扩频增益,但一旦回波数目增加(如图1),回波之间的干扰加大,信道估计带来的增益会急剧下降,在极端恶劣的情况下甚至会出现负值。DTMB的单载波模式,因为采用了时域均衡技术来消除回波影响,对回波长度的敏感度较低,在我们的设计中可对抗近300?s的回波干扰,本文不做重点描述。
图1、 地面信号回波干扰.
高性能DTMB接收芯片
对于大多数设计者提到的前向回波、多径多普勒干扰导致DTMB接收能力下降,根据我们的研究发现,如果所有回波时延范围小于57.4?s,利用合理的帧头区域检测算法,无论回波的分布具有什么样的特征,信道估计的增益都很高,此时信号覆盖主要由信号场强决定,一般情况下车载移动引入的多普勒干扰并不能导致接收失败。经过理论推导与实地测试,当采用MFN(多频网)且回波时延范围在30?s以内的时候,接收质量仅与信号场强相关。
长时延的多径回波更多出现在SFN(单频网)中。为了有效覆盖一个较大的地区,并且进行合理的频率规划,通常会采用SFN的方式来布网。根据前面的分析,当两个发射塔相距超过17.2Km,会很容易出现延时超过57.4?s的强回波,再加上其他物体(如高楼、水面)反射引入的众多密集的多径回波,常会出现场强足够,但是无法正常接收的情况。这也是为什么一些城市完成信号覆盖后仍然不能达到较好接收效果的原因。此外,在车载移动接收的过程中,回波的数量和位置都容易出现剧烈变化,极易导致DTMB接收机帧头检测模块无法准确定位,进而影响了信道估计及时跟踪接收环境的变化,降低了移动接收效果。
从上述分析中可知,在移动接收以及多径回波复杂的环境中,帧头检测的精度至关重要,GX1501B采用了针对SFN特别优化的帧头检测机制,可准确的定位出信号最强的主径位置以及众多的回波范围,为信道估计模块提供最为有效的数据。而信道估计模块则采用了独特的迭代算法,充分利用各条回波的数据,提高了信道估计精度;再结合时域/频域联合均衡的设计,使得无论是C=1的单载波模式,还是C=3780的多载波模式,均可以提供出众的抗回波性能,完全弥补了城市接收环境由于高楼、水面反射以及多发射塔和补点转发器引入造成的接收能力下降。这也使得GX1501B成为了目前各项综合接收性能最出色的DTMB接收芯片。
图2、国芯GX1501B DTMB接收芯片结构图。
上一篇:JPEG图像硬件解码低功耗技术方案
下一篇:自制视频切换器的工作原理图
- 热门资源推荐
- 热门放大器推荐
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 下载文档看视频有礼:获得更高效的PCIe一致性测试文档
- 报名有礼:【TI C2000在实时控制系统中的新特性】网络直播诚邀您参与!
- ST AMG SensorTile开发大赛驾到,重磅大奖与知识兼得,速来~
- 有奖直播预报名|TI 新一代Sitara™ AM62处理器革新人机交互——加速边缘AI的开发
- 直播已结束|Littelfuse 智能楼宇电子设备安全与可靠性解决方案
- 看是德科技利用校准降低仪器测量不确定度、提高测试精度 直播享好礼!
- 泰克MDO系列:1招搞定6大仪器,轻松穿越模拟、数字、频域测量
- 双重好礼等你来!2022年,让英飞凌更懂你!
- 2018开“芯”学:Mentor两场知识有奖问答邀你新年充电
- 浏览Intel物联网时代下的工厂&建筑,下载赢奖品