小波变换开关电流电路CAD设计

最新更新时间:2011-08-16来源: 互联网关键字:小波  变换  开关  电路  CAD 手机看文章 扫描二维码
随时随地手机看文章
用开关电流技术实现小波变换, 关键是小波滤波器的实现; 小波滤波器传输表达式可通过对小波基函数的有理逼近来获得。基于Pad 逼近的方法, 采用高斯函数族作为小波基函数, 对所选的高斯函数进行频域的有理分式逼近来获取小波滤波器传输表达式, 从数学上提出一种设计小波变换开关电流( SI)滤波器的CAD方法。结合SI的电流模信号特点, 利用双二次滤波器的性质, 用SI单元电路的级联结构来实现电路的灵活设计。设计举例给出了设计思路, MATLAB仿真结果显示这种方法的可行性。

  1 系统框图及设计基本原理

  提出设计小波变换S I滤波器的CAD 方法, 具体见框图1。先由用户选择小波基, 即确定高斯函数的参数, 以及采用其第N 阶导数作为小波基。然后, 选择Pad 逼近的方式, 得到时域或频域的有理分式之后, 可以利用SI滤波器的性质来用对应的SI单元电路的级联结构实现, 从而运用了SI技术的优点和性能优势。

  使用Mat lab编程可以实现该CAD 系统, 它是一个窗口界面交互编程模式, 通过输入数据及点击菜单栏选择相应的菜单, 从而完成系统框图设计。采用M atlab可以实现Pad 逼近的小波基函数有理式逼近的算法, 通过从菜单输入高斯函数导数的阶数和尺度因子可以实现有理式表达式的CAD; 而SI电路具有模块化设计的特点同时开关电流滤波器的时间常数由晶体管的宽长比或时钟的频率决定, 实现基本小波滤波器后只需要调节时钟频率即可实现不同尺度的其他滤波器。

  

系统框图

 

  图1 系统框图

  1. 1 开关电流技术

  S I电路由受时钟控制的开关、电流镜等电路构成, 利用MOS器件栅- 源间电容存储效应实现对电流信号的处理。在实现线性离散电路系统设计时需要的基本单元有三个: 加法器, 乘法器和贮存单元;当用SI电路实现时, 其分别对应SI电路的基本单元为结点——电流信号的相加、比例电流镜和S&H(取样保持)单元, 这样使电路的设计可以模块化而大大简化电路的设计。利用SI基本单元可以组成积分器而实现不同品质因数的滤波器, 最终达到小波变换电路设计的目的。

  另外, 用信号流程图的观点来理解S I基本电路, 可以使系统传输函数的SI实现更明了。如通用积分器的SI电路设计, 可由同向输入, 反向输入和放大输入叠加构成, 如图2所示。

  输出电流为:

  

输出电流

 

  当i1 ( z ) = - i2 ( z ) = i( z ) /2, a1 = a2 = a 构成双线性积分器, Z 域传输函数为:

  

Z 域传输函数

 

  

通用积分器

 

  图2 通用积分器。

  1. 2 小波基的选择

  高斯函数的通用表达式:

  

高斯函数的通用表达式

 

  式中a是参数, 定义δa(n) q 为δa ( t)的N 阶导数:

  

N 阶导数

 

  若

小波变换定义

( a 取为一个具体值) 则函数δa (n) ( t )满足小波的可容许性条件, 可采用δa(n) ( t )作为小波基函数, 相应的函数f ( t)在尺度为b, 位置为t处的卷积型小波变换定义为:

 

  

有理分式函数

 

  可以证明, 其各阶导数也是满足小波函数的容差条件的, 采用高斯函数及其N 阶导数为母小波。

  1. 3 有理式的Pad 逼近

  Pad 逼近具有: ( 1)计算简便性——只要获得要逼近函数的Tay lor展开, 再求线性方程组就可以获得其有理逼近式; ( 2)应用广泛——只要函数可以被展成Taylor级数就可以获得其Pad 逼近式。这两个特点使Pad 逼近十分适合于小波滤波器的实现。滤波器的传输函数通常表示为有理分式, Pad 逼近就是从幂级数出发获得有理函数逼近式的一种十分有效而且简洁的方法, 其思想就是对一个给定形式的幂级数构造一个有理函数, 称之为Pad 逼近式, 使其Taylor级数展开有尽可能多的项与原来的幂级数相吻合。

  Pad 变换的定义 如果存在有理分式函数PL ( s) /QL ( s) ∈ RL,M (PL ( s)与QM ( s)互质)满足:

  

有理分式函数

 

  及:

  

有理分式函数

 

  0 0 则称PL ( s) /QM ( s)为f ( s)在RL,M 中的Pad 逼近式, 记为[ L /M ] f ( s), 或简记为[L /M ]。上面的定义给出了求已知函数f ( s)有理表达式逼近方法。若记:

  

有理表达式

 

  QM ( s)乘以式( 3), 并比较等式两边1, s, s2, ……, sL +M的系数, 可p, p 1, ……, pL 及q0, q1, ……, qM 的线性方程组(称为Pad 方程组):

  

Pad 方程组

 

  及:

  

Pad 方程组

 

  其中规定a ≡0, n < 0; qj ? 0, j > M。对方程组( 6)、( 7)求解, 可得到PL ( s)和QM ( s)的系数。根据测不准原理, 高斯函数的时间分辨率与频率分辨率的乘积可以达到理论的最小值, 这样, 用高斯函数族作为小波基函数, 在最大限度上解决了时宽和带宽不相容的矛盾, 在时域和频域均有较好的分辨率。

1. 4 双二次积分器的性质

  在对小波函数的频域表达式进行Pad 变换后,就获得其频域的有理分式逼近。但是此时得到的表达式是S 域的, 而要运用S I基本单元模块电路, 就要对表达式进行变换来转化到Z 域, 这里可通过Z域综合法来实现。采用开关电流基本单元为模块的CAD设计可使电路设计在实现上模块化、直观化,便于灵活现实采用不同S - Z 转化( FD、BD、BL、LD I)时不同结构的电路。FD (前向差分映射) , BD(后向差分映射) , LDI(无损离散积分映射) , BL(双线性积分映射), 其中性能最好的是BL。

  为了使电路的设计更加具有灵活性, 这里采用了S I双二次滤波器的性质。即对具有如下传输函数表达式的滤波器, 有:

  

传输函数表达式

 

  其中w0 是滤波器的特征频率、Q 是品质因素。当a0、a1、a2 为不同的值时, 传输函数可以得到二阶低通, 二阶高通, 二阶带通, 二阶全通滤波器函数。而式( 8)又可以由图3所示的信号流程图来表示。

  

双二次滤波器信号流程图

 

  图3 双二次滤波器信号流程图

  在进行S域到Z域的传输函数表达式转换, 采取双线性变换, 得到如图4所示的流程图, 对应的系数就可以很容易的算出来: k0 ~ k4 分别为:

  

k0 ~ k4 分别为

 

  其中( z+ 1) / ( z- 1)可以用开关电流双线性积分器来实现, 系统通过这种S - Z 域转化可以得到系统的框图, 这里通过把SI电路基本单元框图如双线性积分器作为数据库, 当有理表达式含有该项时让CAD 系统自动调用该结构框图然后级联组成系统。

  另外由于S - Z 是非线性变换, 还得求Z 域频率, 即频率预翘曲公式来处理:

  

频率预翘曲公式

 

  其中, f s 为采样频率, fp 为S 域的频率, f 为Z 域的频率。

  

双线性积分器实现的双二次滤波器信号流程图

 

  图4 双线性积分器实现的双二次滤波器信号流程图

  2 举例

  设计举例, 步骤如下:

  ( 1)小波基的选择为确定高斯函数频域表达式的参数及导数阶数N 的值, 这里取高斯函数的一阶导函数为小波基; 即对小波基设置窗口选择a= 2-2, N = 1;( 2)进行Pad 逼近, 选择[L /M ] Pad 逼近, 这里对Pad 逼近窗口设置为[ 3/5] Pad 逼近。就得到分子及分母的各项系数, 写成频域的有理表达式, 如下:

  

频域的有理表达式

 

  改写成为:

  

频域的有理表达式

 

  ( 3)有理式的分解—— Z域综合。选择菜单选项中的BL变换, 对式( 9)应用上面介绍的框图法,各个式子的对应关系如下。

  通过可以变成H 1 ( z)的形式, 对应一反向有损积分器与同向有损积分器并联相加组成; H 2 ( s ) =对应带通滤波器, 如框图第二行;则对应高通, 带通, 低通滤波器的输出之和, 如框图第三行; 系统的框图就能很容易得到如图5所示。

  

系统框图

 

  图5 系统框图

  ( 4)采用归一化方法, 利用M atlab显示原函数与逼近函数图像对比, 可见逼近度是可以满足一般要求的, 如图6所示。

  

Pad 逼近的图像

 

  图6 Pad 逼近的图像

  3 结论及结果分析

  本文首次提出采用开关电流技术实现小波变换电路的一种CAD 方法。采用高斯函数族中的一阶导数为母小波, 采用[ 3 /5 ] Pad 逼近得到其有理表达式。采用[ 3 /5] Pad 逼近能满足要求, 要是想提高逼近度可采用高阶Pad 逼近如[ 6 /10] Pad 逼近, 其均方差(MSE )可小至0. 19 % 10- 4, 但是相应的会提高成本; 又利用了SI基本模块作为单元模块通过编程来得到系统框图结构。

关键字:小波  变换  开关  电路  CAD 编辑:神话 引用地址:小波变换开关电流电路CAD设计

上一篇:智能投饵机开关电源分析与仿真
下一篇:MAX9670/MAX9671双路SCART矩阵开关

推荐阅读最新更新时间:2023-10-13 10:52

松耦合全桥谐振变换器的传输特性研究
1前言: 在非接触式感应电能传输系统中,能量发射装置和能量接受装置是通过一个松耦合的变压器来实现的。变压器原边和副边之间有一个较大的气隙,变压器的耦合系数很低,漏感很大,一般情况下,漏感和励磁电感处在同一个数量级。采用互感模型分析可分离变压器,利用互感来描述初、次极的耦合能力,这种模型能很好的指导非接触式能量传输系统的设计。 由于漏感较大,它不仅影响能量传输的功率和效率,而且大幅度加大功率器件的电压和电流应力。图1为初级次级都不加补偿的松耦合谐振变换器,流过变压器的电流近似线性变化。为了得到较高的功率传输比,降低由漏感所引起的开关管的高电压应力,减小变压器 图1原副边都不加补偿的松耦合谐振变换器   对周围环境的电磁辐射,必须
[电源管理]
松耦合全桥谐振<font color='red'>变换</font>器的传输特性研究
机械手视觉系统外围电路设计攻略
  机械手的三块控制器的控制芯片都为2407DSP,虽然三块控制器实现的功能不同,但在硬件电路设计时按照DSP 管脚的功能,设计外围电路如下:    PWM 管脚: DSP 的每个事件管理器都有与比较单元相关的PWM 电路,能够产生六路带可编程死区和输出极性的PWM 输出,但是都是成对输出的,对于本控制器需要的独立的输出,每个事件管理器只有3 路,一个DSP 有两个事件管理器,可以独立的输出6 路PWM 波。液压控制器需要6 路PWM 波驱动电业比例阀,而伺服电机控制器需要4 路0-5V 的加速器信号调节电机转速,在设计电路时将这两种电路设计在一起,并制成印刷电路板,焊板时按每板的功能焊接即可,液压控制器需要输出PWM 波形
[电源管理]
机械手视觉系统外围<font color='red'>电路</font>设计攻略
光棒放大电路图及原理
本电路主要由光棒和四运算放大器IC1组成,IC1a为放大器,利用硅二极管的指数式正向导电特性,把光棒的输出变换成对数式的变化电压,其峰-峰值正比于白,黑光电流之比,而与绝对值无关,IC1b为比较器,和峰值检测器D2-C1一起把放大器ICa的输出箝到固定电位。于是,放大和箝位后的信号变换成微处理器需要的二进制数字式输出。输出是与TTL兼容的。
[模拟电子]
光棒放大<font color='red'>电路</font>图及原理
变频器维修仪对电路板的维修
在无任何原理图状况下要对一块比较陌生的 电路 板进行维修,以往的所谓“经验”就难有作为,尽管硬件功底深厚的人对维修充满信心,但如果方法不当,工作起来照样事倍功半。那么,怎样做才能提高维修效呢?根据我公司进口设备维修中心统计出来的资料,应遵循以下几个原则有步骤、按顺序有条不紊的进行。 原则一、先看后量 使用工具:万用表、放大镜 当手拿一块待修的电路板,良好的习惯首先是应对其进行目测,必要时还要借助放大镜,看什么呢? 主要看: 1、是否有断线; 2、分力元件如 电阻 、电解 电容 、电感、二极管、三极管等时候存在断开现象; 3、电路板上的印制板连接线是否存在断裂、粘连等; 4、是否有人修
[模拟电子]
开关电源防雷知识要点
 一、现代通信开关电源为实现无人值守,均具备远程监控功能,例如遥信、遥测、遥控,而与之相联的信号线接口通信距离长,极容易遭受感应雷损坏而造成停机等事故,根据信产部要求应加装相应的信号防雷器予以保护。   二、加装直流防雷器是最近发布的防雷 标准 中才提出的,因为直流防雷器的残压大大低于交流防雷器,因此能有效地提高通信开关电源通信站内敏感设备抵御雷电电磁脉冲的能力。   三、防雷器的防雷能力与安装方式有密切关系,主要是引线电感会产生额外的残压,应尽可能地缩短电力线与防雷器的连线和防雷器与接地汇接板连线的长度。   四、多级布置防雷器可减小引线电感带来的额外残压,因为前级防雷器已将大部分雷电流泄放入地,在后级的防雷器只泄放少部分雷电流
[电源管理]
开关电源过流保护方式比较分析
引言   电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。   1  开关电源中常用的过流保护方式   过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。   图1中①表示电流下垂型,②表示恒流型,
[电源管理]
<font color='red'>开关</font>电源过流保护方式比较分析
通过光纤传输USB信号的电路设计及应用
由于目前计算机的USB信号使用电缆传输,所以通信距离难以延长,一般不超过30米。本文的方案克服了现有电缆传输USB信号距离短的缺点,从而提供一种通过光纤传输USB信号的电路,使USB的通信距离增加到几十千米。 1 实现原理 本方案是一种通过光纤传输USB信号的电路,成对使用,通过光的强度的三个等级(全亮、半亮、暗)分别代表USB数据线的三种状态,当光的强度为最低时(暗)代表USB数据线的闲置状态。先发送USB信号的一方由于其USB的数据状态先改变,其状态的改变通过光纤传输到对方电路的接收电路产生一个下降沿(或者上升沿)触发一个单稳电路,此单稳电路的输出控制USB信号的“收/发”允许。先发送USB信号的一方由于其USB的数据状态先
[嵌入式]
基于FPGA的快速傅立叶变换
摘要:在对FFT(快速傅立叶变换)算法进行研究的基础上,描述了用FPGA实现FFT的方法,并对其中的整体结构、蝶形单元及性能等进行了分析。 关键词:FPGA FFT 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。 1 整体结构 一般情况下,N点的傅立叶变换对为: 其中,WN=exp(-2 pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很
[应用]
小广播
最新电源管理文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved