使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。
1总体结构框图
本系统原理如图1所示,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。
2半导体激光器电源控制系统设计
目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。
2.1慢启动电路
半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,如图2所示:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。
2.2恒流源电路的设计
为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路如图3所示。
如图3所示,该恒流源由运放U1和三极管T1,达林顿管Q2进行电流放大,再通过U2放大反馈,从而实现恒流输出。TQ2以大功率达林顿管为调整管,将其接成射极输出的形式,半导体激光器(LD)作为负载串联在达林顿管的发射极,通过控制达林顿管的基极实现对激光器电流的控制。本设计要求电路最大能输出3 A工作电流,这就要求推动达林顿管的基极电流也比较大,但因集成运算放大器一般工作在小电流状态,不能直接推动达林顿管正常工作,即使勉强推动其工作也会造成集成运算放大器本身功耗过大,温升过高,影响电路的输出精度,所以采用小功率三极管T1推动大功率达林顿管工作。采样电阻接在激光器下端,采样信号经过由U2组成的同相比例放大环节放大后再接回到U1的反相输入端,构成电流负反馈电路,达到输出恒流的目的。
2.3激光功率的稳定控制
光功率反馈采用外部监测光电二极管的输出光电流,由放大器再经A/D转换后送CPU处理,得出控制量,调整激光器的工作电流,从而进行激光功率的闭环控制。
温度控制在本系统中采用了半导体制冷来实现,这是一种热电制冷器,只要控制流过温控器电流的大小和方向,就能对激光器进行制冷或加热,从而控制激光器的工作温度。
2.4保护电路
虽然慢启动电路消除了高频冲击电流的危害,但不能有效地防止直流或低频电流过载对半导体激光器的危害,因此,应当设立过载保护电路。一般可采用限流式保护电路。若长时间工作于短路的情况下,过热仍然会导致调整管的损坏,此时可以采取截流式保护电路。过电压保护的精度主要取决于稳压二极管,而其工作点是随流经稳压管的电流和环境温度变化的,因此,设计上必须选用稳定电压的温漂非常小的稳压管。
3软件设计
本系统软件采用模块化的结构设计,自顶向下,逐步细化,利用子程序构成各模块,如初始化模块、键盘模块、显示模块等。主程序流程图如图4所示。
在主程序流程中,系统上电复位后,开始进行各模块初始化,然后调显示子程序,显示数据,再调键扫描子程序,若有键按下,则调相应的键功能程序,若无键按下,则循环调用显示程序。
4结 语
本文中设计的半导体激光器驱动电源的控制系统通过慢启动电路、恒流源电路和光功率反馈电路等,解决了恒流和在工作温度范围内输出功率的不稳定问题,稳定度较高。
关键字:半导体 激光 驱动 电源
编辑:神话 引用地址:半导体激光器驱动电源的控制系统
推荐阅读最新更新时间:2023-10-13 10:53
基于ARM芯片S3C2410的TFT-LCD驱动方法
S3C2410是三星公司生产的基于ARM920T内核的RISC微处理器,主频率可达203MHz,适用于信息家电、Smart Phone、Tablet、手持设备、移动终端等领域。其中,集成的LCD控制器具有通用性,可与大多数的LCD显示模块接口。
PD064VT5是一种用非晶硅TFT作为开关器件的有源矩阵液晶显示器,该模块包括TFT-LCD显示屏、驱动电路和背光源,其接口为TTL电平。分辨率为640 x480像素,可通过18bit数据信号显示262 144种色彩。
1 S3C2410的LCD控制器
S3C2410中的LCD控制器可用于传输视频数据并产生必要的控制信号(像VFRAME、VLINE、VC
[单片机]
可穿戴设备元器件热烧 意法半导体紧盯医疗领域
就目前为止,可穿戴设备的应用与发展应可以说是产业界最为热门的话题,其中又以智能眼镜与智能手表的讨论热度最高。不过,对ST(意法半导体)来说,所谓的可穿戴设备应用,在随着不同的实际环境下,会有着不同的变化与发展,未来可谓有“百花齐放”的型态出现在你我的眼前。
依照ST的预测,可穿戴设备应用在实际环境将有一部份会落在医疗领域中,但就整体市场份额中并不是太高,初期来看,应该会以娱乐或是配件式的搭配使用,占较为大宗的应用。然而,ST对于医疗照护等领域的经营却并没有中断。根据ST表示,旗下的相机模组与图像处理器已获得相机大厂OrCam采用,该相机可装载在眼镜架上,来大幅改善视障人士的行动能力和阅读路标、包裹、印刷品的能力
[医疗电子]
巧用DSP在电源设计中的应用
电源的信号测控部分由DDS信号发生和信号测量组成。DDS 在电源设计中的应用早已存在。在早期的DDS 设计中,硬件组成由计数器、触发器等多种多个分立逻辑元件组成; 而在出现可编程逻辑器件CPLD、FPGA 后,DDS 的硬件构成简化了许多。电源的信号测量,分为频率、幅值及相位的测量。频率的测量采用脉冲填充法; 幅值测量则随着A/D 转换器的采样速度及处理器速度的提高,由原来的有较大延迟的真有效值转换发展为周期实时采样计算;相位测量则在幅值测量的基础上,由原来的间相脉冲填充法发展为乘法器矢量测量。 DSP 的高速处理能力,使其可以实现DDS 中的CPLD 或FPGA 及测量电路中的模拟数字混合乘法器的功能,从而使电源的信号发
[嵌入式]
华力:秉持"909"基因 以做强半导体产业为使命
2016年底,一条总投资达387亿元,规划月产能4万片,设计工艺为28nmLP/HKMG-14nm先进工艺的半导体晶圆生产线正式开工建设。半导体作为战略性、基础性、先导性产业,它的发展对于推动我国制造业转型升级、提高国家信息安全均具有重要意义。长期以来,我国一直把半导体产业作为重点产业予以扶持。因此,上述项目建设一经启动便引起了业界的广泛关注。而该项目的建设实施者上海华力微电子有限公司(以下简称“华力”),作为国家“909工程”承担实施单位,一直担负着推进我国半导体产业发展、追赶国际先进水平的重任。 国企的坚持 推动半导体产业发展 华力公司肩负使命,致力于解决国内IC设计公司急迫的产能需求,华力一期现已步入稳定阶
[半导体设计/制造]
平衡升压LED背光驱动背水一战
对于讲究节能减碳的这个时代而言,发光二极管(Light-Emitting Diode, LED )已经是广为使用的一种光源,因为其具有相当优良的发光效率以及精巧的组件体积,且LED的电光转换效率相当的好,高于日光灯、冷阴极管(CCFL)或是灯泡等,所以当前之趋势为以 LED 来取代上述这些发光源。举例来说,现代的液晶屏幕(LCD panel),大都以LED来取代以往的CCFL来当作背光, LED 几乎已经取代CCFL,成液晶面板(LCD panel)的背光光源。 通嘉推出背光 驱动 IC——LD7890主要为升压拓扑架构,可驱动4 Channel LED light bar, 10VMOSFET DRV输出电压,高转换效率,外置4
[电源管理]
2014最具“钱途”十大半导体厂商高通垫底
又到一年的尾声,临近岁末,各大榜单纷纷出炉。日前,市场研究公司发布了2014年度半导体厂商营收排行,其中前九位与往年并无区别,排名第十位的联发科以57.5%增长率迅速增长,首度挤进前十,安华高(Avago)则以107.9%的增长率占据第15位,总体来看,2014年全球半导体产业营收总额增长了9.4%左右。 1、安华高(Avago)增长率107.9% Avago Technologies (安华高科技)公司是一家设计、研发并向全球客户广泛提供各种模拟半导体设备的供应商,公司主要提供复合 III-V 半导体产品。我们在高性能设计和集成方面拥有超群的实力。我们的产品组合广泛多样,在以下四个主要目标市场中拥有约 6500 种产
[手机便携]
电源系统设计的无风险路径
简介 现在,高性能电源系统已经有了长足进展,设计人员正在使用多个输入电压,驱动种类繁多应用的多路电压轨。由于确保PoL稳压器尽可能靠近负载的需求,设计人员需要在一个非常小的范围装满大量功率转换功能。与此同时,企业资源正趋于扩展到工程师期望的多任务地步,常常是由多面手,而不是电源专家来负责设计电源系统。因此,当今复杂的电源要求可能令设计人员非常头痛:如何利用不同资源为多样化的负载提供高性能电源,从而保证架构的所有部分都在其功率和散热范围内运行,同时还可优化效率和成本目标。 新的应用带来了进一步的挑战。例如,随着迁移到更便宜、更清洁、更高效能源的发电,以及政府推动的应用,企业正在寻找如何能够通过转向高压直流(HVDC)配
[电源管理]
应对汽车ADAS电源管理设计挑战,谁是你心仪的“芯”方案?
安全性和功能性是汽车技术演进的两个主要目标。前者是人们对汽车作为交通工具的核心诉求,以尽可能杜绝由汽车系统故障或人为因素所造成的事故;后者则是要不断扩展汽车产品的外延,带来更佳的用户体验。 沿着这样设计思路,越来越多的 汽车电子 系统正在被开发出来,并被集成到驾驶舱中,其中最有代表性的就是高级辅助驾驶系统(ADAS)。 通过使用 传感器 (包括 摄像头 、 毫米波雷达 、 激光雷达 等)感知周围的环境,并基于功能强大的实时数据处理和计算能力进行分析和决策,今天的ADAS系统正在不断提升自身的智能化水平,实现自动紧急停车、盲点监测、车辆/行人报警和避让、车道偏离报警和辅助等功能,以缓解驾驶员的负担,减少人为操作错误,提升整体
[汽车电子]