对消驱动电路提高共模抑制比

最新更新时间:2012-02-11来源: 互联网关键字:驱动电路  共模  抑制比 手机看文章 扫描二维码
随时随地手机看文章

心电检测是在强共模干扰下的微弱信号检测,为了提高电路的共模抑制比,常采用对消驱动电路(右腿驱动)来提高共模抑制比。

  心电信号是人体特定的点与点之间的差模电压,信号幅度在0.5mV~8mV之间,典型值为1mV.心电受到的工频干扰非常强,一般情况下人体的工频幅值在V级,比心电信号大3个数量级,工频干扰常以共模形式出现。

  在如此强的工频干扰中检测出微弱的心电信号是一大挑战,这就要求运放具有很高的共模抑制比,一般要求在60~120dB之间,太低了影响心电图机性能,太高的运放成本上会让人难以接受。采用高共模抑制比的前置放大器,如在50Hz时80dB共模抑制比的仪表放大器是属于性能比较好的产品,这样工频干扰的幅值还是达到了信号幅值的十分之一,对于医生诊断来说是不能接受的,心电图机普遍采用对消驱动电路来进一步增强共模抑制能力。

  

 

  图1:对消驱动模型

  U2A和R9,R10,R11,C7共同组成了右腿驱动电路,其原理是通过R6,R7从人体取出共模电压反向加到人体。下面我们通过公式来说明对消驱动的作用,计算中忽略C5,C6,1A,U1B 的误差对共模抑制比的影响,同时R10和C7是为了系统稳定而设计的,不影响低频时共模抑制比的计算,计算时忽略,公式推导如下:

  U1A,U1B作用是阻抗变换的跟随器,有:

  Vcom=Vin (1)

  U2A 组成了一个反向放大器,其传递函数为:

  Vout=-(R9*Vcom)/R8 (2)

  根据基尔霍夫电流定律有:

  (V1-Vin)* jwC11=Vin* jwC2+(Vin-Vout )/R11 (3)

  得到Vin传递函数为:

  Vin=R8*R11*JWC2/(R8*R11* jwC1+R8*R11* jwC2+jwC1* jwC2*R8+ jwC1* jwC2*R9 ) (4)

  带入常用电路的典型参数:

  R8=10kΩ,R11=100kΩ,R9=1M,C2=100pf不考虑电容的相位影响,略去极小项则:

  Vin=R8*R11* jwC2/(R8+R9) (5)

  在以上参数下Vsub>in幅值为:

  Vin=1 /3000=-69dB (6)

  按照上述参数设计的右腿驱动电路理论上可以提供69dB的共模抑制比,这是一个对消驱动简化模型,实际电路中考虑到阻容的误差,滤波电容对相位的影响,运放的延迟等等,右腿驱动的共模抑制能力会劣化甚至产生震荡,具体的电路需要根据需要进行调整。

关键字:驱动电路  共模  抑制比 编辑:神话 引用地址:对消驱动电路提高共模抑制比

上一篇:反馈设定输出阻抗节省输出功率
下一篇:如何选择最佳放大器驱动SAR模数转换器

推荐阅读最新更新时间:2023-10-12 20:34

基于SA7527的LED照明驱动电路的设计
  随着社会的发展,人们越来越提倡绿色照明,LED日光灯作为其中一种正在被广泛使用,LED日光灯相对于普通的日光灯具备节能、寿命长、适用性好等特点,因单颗LED的体积小,可以做成任何形状,拥有回应时间短、环保、无有害金属、废气物容易回收、色彩绚丽、发光色彩纯正等优势。本文通过SA7527设计的一款LED日光灯驱动电路,稳定可靠性比较好,不仅能够降低日光灯的成本,提高它的转化效率,还可以实现恒流恒压输出,同时能驱动不同功率的LED。   一、电路的设计   1.电路组成   全电路由抗浪涌保护、EMI 滤波、全桥整流、反激式变换器、PWMLED驱动控制器、闭环反馈电路组成,如图1。      图1 基于SA7527
[电源管理]
基于SA7527的LED照明<font color='red'>驱动电路</font>的设计
一种神经信号调理电路的设计
   人体的神经信号直接表征着人体自我的意思,研究神经信号为了解、识别人体提供了一条途径。多年来。目前,研究内容主要包括神经电极和神经信号调理电路两部分。神经电极可以将神经电信号从人体中提取出来,而神经信号调理电路则对神经信号进行去噪、放大、识别等处理。 神经信号和人体的其它生物信号有相同的一些特点,也有其独具的一些特征。根据神经生物学的研究,神经信号一种形似脉冲的电信号,频率一般为1kHz左右,高的可达10kHz。例如一束控制肌肉的运动神经,当有冲动电位信号到来时,肌肉纤维便发生收缩反应,收缩的力度根据神经冲动频率的不同而有强弱的区别。因此,只要将脉冲电位进
[模拟电子]
LED照明设计LED电特性及简单驱动电路
   LED照明 作为新一代照明受到了广泛的关注。仅仅依靠 LED封装 并不能制作出好的照明灯具。本文主要从电子电路、热分析、 光学 方面对如何运用 LED 特性来设计进行解说。    LED   LED是电子二极管的一种,主要构造是 PN结 。如图1,当向LED的两端施加电压,电子就会吸收能量并向价电子带转移,然后再将吸收的能量释放出来。这个被释放出的能量就是光。放出的光的波长和颜色是由 半导体 的电势差决定的。   图1 LED运作原理    LED应用   LED具有发 光效 率高、寿命长、轻便、不含有害物质等优点。高发光效率可以增加电池的使用寿命,对于随身携带的产品来说很适合。LED的使用寿命是一般
[电源管理]
LED照明设计LED电特性及简单<font color='red'>驱动电路</font>
基于恒流二极管的小功率LED驱动电路设计
近几年,LED 的发光效率增长100 倍,成本下降了10 倍,广泛用于背光、信号显示、照明等领域。在LED 光源及市场开发中,极具发展与应用前景的是白光LED,它用作固体照明器件的经济性显著,且有利于环保,正逐步取代传统的白炽灯。 由于小功率白光LED 价格低廉,发热量小,光效高等特点,被大范围的应用到了普通照明,景观照明,因此小功率LED 驱动电源的设计和性能上的提高也就有了迫切的需求。LED 照明灯通常采用市电供电,由于LED 工作电压低,电流小等特点,用市电驱动LED 要解决降压和整流问题,还要有比较高的效率,较小的体积和较低成本。LED 是电流驱动器件,其亮度与正向电流成正比,为了保证LED 发光高效均匀
[电源管理]
基于恒流二极管的小功率LED<font color='red'>驱动电路</font>设计
几种LED驱动电路设计组合分析
  LED 驱动电路除了要满足安全要求外,另外的基本功能应有两个方面,一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。二是驱动电路应保持较低的自身功耗,这样才能使LED 的系统效率保持在较高水平。   传统的低效率LED驱动电路:      图1   图1 是传统的低效率电路,电网电源通过降压变压器降压;桥式整流滤波后,通过电阻限流来使3 个LED 稳定工作,这种电路的致命缺点是:电阻R 的存在是必须的,R 上的有功损耗直接影响了系统的效率,当R 分压较小时,R 的压降占总输出电压的40%,输出电路在R 上的有功损耗已经占40%,再加上变压器损耗,系统效率小于50%。当电源电
[电源管理]
几种LED<font color='red'>驱动电路</font>设计组合分析
精确测量ADC驱动电路建立时间
  引言   许多现代数据采集系统均是由高速和高精度ADC组成的。由于其低成本和低功耗,基于CMOS开关型电容器的ADC通常被用于此类设计中。ADC使用一个无缓冲前端,直接耦合至采样网络。为了有效地最小化噪声和信号失真,需使用一款高速、低噪声和低失真的运算放大器来驱动该ADC。为了使失真最小化,将运算放大器输出在ADC采集时间内调节到理想的精度是非常重要的。通常,运算放大器建立时间是根据产品说明书中规定的频率响应时间计算得出的,也可以通过具有精度限制功能的示波器对输出进行测量得出,有时需要将运算放大器的输入与输出差值放大来实现更高的精度。但这些方法均受示波器精度以及电路寄生的限制。此外,运算放大器的建立时间还受由示波器探针导
[测试测量]
精确测量ADC<font color='red'>驱动电路</font>建立时间
一种省去电解电容优化LED驱动电路的设计
  针对现有LED驱动电路存在电解电容限制寿命的不足,提出了一种无电解电容的LED驱动电路的设计方法。该方法采用Panasonic松下MIP553内置PFC可调光LED驱动电路的芯片,与外部非隔离底边斩波电路合成作为基本的电路结构,输出稳定的电流用以满足LED工作的需要。同时设计保护电路来保护负载。实验结果表明,控制器芯片能稳定工作,并且可以实现27V的恒压输出和350mA的恒流输出。   LED(发光二极管)以其节能、环保、高亮度、长寿命等诸多优点成为新一代的绿色照明光源。随着LED照明技术的日渐成熟,它终将用于生活的各个方面,并成为照明光源的新宠。然而,高效率、低成本、高功率因数和长寿命的驱动电源是LED灯发光品质和整体性能的
[电源管理]
一种省去电解电容优化LED<font color='red'>驱动电路</font>的设计
基于电感升压开关型变换器的LED驱动电路
一、基本电路拓扑与工作原理   基于 电感升压 开关型变换器的 LED驱动 电路广泛应用于电池供电的消费类便携电子设备的背光照明中。电感升压变换器基本电路拓扑主要由升压电感器(L1 )、功率开关MOSFET( VT1)、控制电路、升压二极管(VD1 )和输出电容器(C0)组成,如图1(a )所示。      图1电感升压变换器基本电路及其工作原理图   在便携式设各中所使用的DC/DC升压变换器,其控制器和功率MOSFET (VT1)一般都是集成在同一芯片上,有的还将升压二极管(VD1 )也集成在一起,从而使外部元器件数量最少。   当控制器驱动VT1 导通时,VD1截止,L1中的电流不能突变
[电源管理]
基于电感升压开关型变换器的LED<font color='red'>驱动电路</font>
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved