LP3947—锂电池充电IC分析

最新更新时间:2012-02-11来源: 互联网关键字:LP3947  锂电池  充电IC 手机看文章 扫描二维码
随时随地手机看文章

LP3947是一款内置微处理器控制,性能完善的单节锂电池充电集成电路,它具有可以采用USB接口或AC电源适配器供电,内置调整管构成的线性充电单元,它可以用于稳定电源(LDO模式),输出电流可达1A,可充终止电压为4.1V或4.2V的电池,恒流恒压充电,并可对过放电电池进行预充电,内置电池温度检测,电池温度过高或过低时,充电器自动关断,有5.6小时安全定时器,有过流和过热保护,充电状态指示,充电电流检测,并输出与充电电流成比例的模拟电压,器件结温TJ在0℃≤TJ≤85℃。范围内,充电精度在1%内,输入电压范围:4.3V—6.0V,在AC适配器供电时,充电电流设定范围为100mA—750mA,在USB端口供电时,充电电流设定范围为100-500mA。工作温度:-40℃—+85℃。

  右图为其引脚示意图,该IC可广泛应用于移动电话,数码相机,USB供电的IT设备和掌上电器.LP3947各管脚功能说明如下:

  

单节锂电池充电管理集成电路LP3947

 

  · Pin1(EN):充电输入使能端,输入高电平允许充电,低电平禁止充电。

  · Pin2(SCL):I2C串行接口时钟输入端。

  · Pin3(SDA):I2C串行接口数据输入/输出端。

  · Pin4(BATT):电池充电输入端,此端接10uF陶瓷电容至地。

  · Pin5(VT):2.78V稳定电压输出端,用于测量电池温度的稳定电源。

  · Pin6(VBSENSE):电池电压检测端,与电池的正极相连。

  · Pin7(MODE):选择AC适配器供电(置高电平),选择USB供电(置低电平)。

  · Pin8(Diff-Amp):检测充电电流的差动放大器输出,输出电压正比于充电电流。

  · Pin9(Ts):多功能端,电池温度检测输入端,用于LDO模式/充电器模式输入端,若不装入充电电池,则为LDO模式,用作低压差4.1V或4.2V输出稳压器。

  · Pin10(EOC):内部为开漏输出,当USB端口或AC适配器被连接,电池已充满时,此端输出低电平,可外接一颗LED,亮表示电池已充满。

  · Pin11(GND):地端。

  · Pin12(CHG):内部为开漏输出,当USB端口或AC适配器被连接,电池开始充电,此端输出低电平,可外接一颗LED,亮表示电池已开始充电。

  · Pin13(ISEL):充电器在USB端口供电,此端接高电平,充电电流为100mA此端接低电平,充电电流为500mA(另外I2C接口可设定充电电流)。

  · Pin14(CHG-IN):充电器供电输入端,输入一个稳压有电流限制的电源,在此端必须接一个1uF陶瓷电容接地。

  

单节锂电池充电管理集成电路LP3947

 

  充电过程:LP3947组成的充电器电路如图2,充电过程及充电状态指示见图3,红色LED为充电指示灯,绿色LED充满指示灯,图中的终止充电电压为4.1V.

  充电器接上AC适配器或USB电源,充电器开始工作,如果输入电压在低阈值电压(≥4.3V)高电压阈值电压(≤6.0V)充电器检测到适合的输入电压,预充电开始,红色LED亮,绿色LED熄.

  预充电阶段的充电电流在40-70mA间,使过放电的电池以小电流安全充电,电池电压上升,一直到电池电压上升到3.0V以上时,预充电阶段即告结束,充电定时器启动,开始充电。

  快充电阶段的充电电流在ISEL端接高电平时(USB模式),电流为100mA,在ISEL端接低电平时,电流为500mA,此时若是使用AC适配器充电,快充电流由用户设定(100-750mA)快充电电流精度在≤150mA时为±20mA,≥200mA为±10%,快充电电压到4.1V时,恒流充电阶段结束,转为4.1V恒压充电。

  恒压充电阶段充电电压不变,但充电电流会逐渐下降,直到充电电流下降到一定程度时,充电结束,此时绿色LED亮,红色LED熄,如果快充电电流为1C时,终止充电电流可设定为0.1C,则恒压充电电流下降到50mA,终止充电,在100mA快充电电流时,定时器到5.6小时,终止充电,此时两个LED都亮。

  充电电流有IC内部的电流检测电路检测,有Diff-Amp输出与充电电流成比例的电压(输入微处理器的ADC电压),经微处理器控制后输出终止充电信号,充电电流ICHG与Diff-Amp输出电压的VDIFF的关系为:

  ICHG=(VDIFF-0.497)/1.655

  注意:式中单位:电流为A,电压为V。

  终止充电后若不取出电池,即进入维护状态,当电池电压下降0.2V时,则会进行补充充电,充电电压到4.1V时又会停止充电。

充电电路如图2,这是采用USB供电的充电电路,RT为锂电池中用于检测温度的NTC热敏电阻,VT输出2.78V经Rs到地,Rs和RT组成分压器,其中间端接Ts端(温度检测端,在温度变化时,Ts端的电压相应变化,)当电池温度过高或过低时,Ts检测到此温度,控制器终止充电,此时红色LED亮,绿色LED也亮,表示故障状态。

  CHG端接470Ω电阻及红色LED到CHG-IN端,EOC接绿色LED及470Ω到CHG-IN端,分别指示充电及终止充电状态。

  ISEL,MODE,SDA,SCL,EN和Diff-Amp与微处理器相连接,当充电器中不装入电池,则Ts端检测到电压是2.78V,充电为LDO模式,BATT端输出电压为稳定的4.1V。

单节锂电池充电管理集成电路LP3947

关键字:LP3947  锂电池  充电IC 编辑:神话 引用地址:LP3947—锂电池充电IC分析

上一篇:自制非接触式液位报警器
下一篇:双极性器件还是CMOS器件比较

推荐阅读最新更新时间:2023-10-12 20:34

美国研发出锂电池新型阴极材料,可缓解电池材料供应链紧张难题
导读:美国劳伦斯伯克利国家实验室领导的一个科学家小组开发了一种新的 锂离子电池 阴极设计,将为进一步研究提供一系列不同的材料。该小组希望这一研究能够迅速扩大规模,以缓解电池材料供应链紧张难题。 储能 在向清洁、可再生能源的过渡中发挥着重要作用。虽然还有其他电池类型和其他形式的存储,但锂离子很可能在连接世界电网的存储项目中占据最大份额,并为 电动汽车 和其他重要技术提供动力。 这使很多人对当今锂离子电池中常用的材料产生了关注,而寻找替代材料也成为了全世界科学家和研发团队关注的焦点。 美国劳伦斯伯克利国家实验室领导的一个科学家小组研究了一种叫做过量锂的无序岩盐的材料。他们基于与目前生产的锂离子电池不同的反应类型开发了一种正
[汽车电子]
美国研发出<font color='red'>锂电池</font>新型阴极材料,可缓解电池材料供应链紧张难题
LTC6802在锂电池组均衡电路中的应用
1、均衡电路工作原理 本文基于LTC680221锂电池组管理芯片设计的电池组均衡电路,由取电系统、嵌入式处理器、LTC680221数据采集及均衡电路四部分构成,电路框图如图1所示。 取电系统是均衡电路的供电来源,电源取自锂电池组,并提供给低功耗嵌入式处理器与LTC680221芯片。嵌入式处理器时均衡电路的核心,一方面通过SPI接口与LTC680221进行通信,另一方面对获得的数据进行简单的处理。数据采集电路主要由LTC680221芯片构成,该芯片内置了高精度AD转换器,结合外部滤波电路可以对锂电池组参数实现精确得采样。LTC680221芯片均衡接口的特殊设计,能够控制外部均衡电路进行工作,简化了均衡电路。 1.1取电系统
[单片机]
LTC6802在<font color='red'>锂电池</font>组均衡电路中的应用
我国首个大型多技术路线锂电池储能站今年内建成
8月27日,骄阳似火、烈日炎炎,位于佛山市南海区狮山镇的电网侧独立电池储能项目工地上却是一派如火如荼的繁忙景象。第45台电池舱在650吨汽车起重机的吊装下精准落位,180名建设者顶着酷热在多个作业面加紧施工,一台台装载重型设备的平板运输车正有序进入工地&hell ...
[新能源]
打破锂电池固态电解质的瓶颈 中国科大提出原子级解决方案
当前主流 锂电池 使用液态电解质,这存在起火等安全隐患,且特定体积内能够储存的能量有限。但能解决这些问题的下一代固态 锂电 池仍存在很多尚未攻克的难题。8月21日,顶级学术期刊《Matter》刊登中国科学技术大学的马骋教授和他的合作者最新成果,他们提出来一种新策略,可以有效解决下一代固态锂电池中电极材料和固态电解质接触差这一关键问题,合成出的固态复合物电极展现出优异的容量和倍率性能。 用固态电解质替换传统 锂离子电池 中的有机液态电解质可以极大缓解安全问题,且有望突破能量密度的“玻璃天花板”。然而,主流电极材料也是固态物质。由于两种固态物质之间的接触几乎不可能像固-液接触那样充分,目前使用固态电解质的电池难以实现良好的电极-
[汽车电子]
打破<font color='red'>锂电池</font>固态电解质的瓶颈 中国科大提出原子级解决方案
飞思卡尔全新锂电池ECU 适用48V系统
    奥迪等多家汽车制造商已经开始使用额定电压48伏的电气系统,这样的变化促进了先进汽车技术的推广,同时有助于提高车辆的功率和效能。飞思卡尔半导体公司日前发布了一款高度集成化的锂离子电池控制器,该产品制造性价比高,能够满足48伏锂电池系统需求,可以应用于工业和汽车领域。     通过14个电量平衡晶体管、毫安到千安之间精度误差仅0.5%的电流传感器以及集成到64位QFP(方型扁平式封装)芯片上的通信收发器接口(传输速度2兆赫/秒),飞思卡尔MC33771 电池控制器和MC33664独立通信接口就可以应用到48伏电池系统上,传输稳定性更高,性能表现也更可靠。     当车用或工业用电池组处于异常且存在潜在危险的工作状态
[汽车电子]
单节锂电池充电管理集成电路LP3947
LP3947是一款内置微处理器控制,性能完善的单节锂电池充电 集成电路 ,它具有可以采用USB接口或AC 电源 适配器供电,内置调整管构成的线性充电单元,它可以用于稳定电源(LDO模式),输出 电流 可达1A,可充终止 电压 为4.1V或4.2V的电池,恒流恒压充电,并可对过放电电池进行预充电,内置电池温度检测,电池温度过高或过低时,充电器自动关断,有5.6小时安全定时器,有过流和过热保护,充电状态指示,充电电流检测,并输出与充电电流成比例的模拟电压,器件结温TJ在0℃≤TJ≤85℃。范围内,充电精度在1%内,输入电压范围:4.3V—6.0V,在AC适配器供电时,充电电流设定范围为100mA—750mA,在USB端
[电源管理]
单节<font color='red'>锂电池</font><font color='red'>充电</font>管理<font color='red'>集成电路</font><font color='red'>LP3947</font>
美国科学家研发新型热调控磷酸铁锂电池
据报道,美国宾夕法尼亚州立大学王朝阳教授团队研发了一种热调控磷酸铁 锂电池 (TMB),可同时解决当今有关新能源汽车“里程担忧”和“充电时间忧虑”的两大难题。 具体而言,该磷酸铁 锂电 池仅需充电10分钟就可以续航约250英里,电池寿命超过200万英里,而且成本仅与传统的 内燃机 相当。 这款电池满足了 电动汽车 大规模普及的所有需求,即低成本、无里程焦虑、超安全、长寿命、全气候,可以帮助实现让电动汽车走进千家万户的目标。 研究人员表示,“我们为普通大众的电动汽车开发了一种电池,其成本与内燃机汽车相当。这款电池不再存在里程焦虑,而且价格实惠。” 该研究成果已于1月18日发表于能源领域世界最顶级期刊《自然?能源》(N
[汽车电子]
美国科学家研发新型热调控磷酸铁<font color='red'>锂电池</font>
单、双节锂电池2x20W动态升压双声道音频功放组合方案
内置电池便携式音箱续航时间是重要的考量指标。而现在输出功率越做越大,因为功率是保证音质效果的重要前提。功率做大,音频功放供电电压就要越高,单节锂电池3.7V,双节锂电池7.4V直供输出功率有限,所以要提升输出功率有效的方法就是电池升压后再给功放供电。由于升压转换效率的存在又影响电池的续航时间。 有效提升机器续航时间办法有:1.用同步升压,同步升压可以规避非同步升压整流二极管固有压降大而损耗大的相对劣势,整体提升效率。2.动态升压搭配音频功放,对于DC-DC升压模块,输出越高,效率越低。搭配音频功放应用时,音乐有高有低,时高时低,并且不同的应用场景,不同的时间段,播放音量设置也不一样。升压模块根据音乐大小动态调整升压值可以有效提
[电源管理]
单、双节<font color='red'>锂电池</font>2x20W动态升压双声道音频功放组合方案
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved