Σ-ΔADC转换器工作原理及应用分析

最新更新时间:2012-02-19来源: 互联网关键字:Σ-ΔADC  转换器 手机看文章 扫描二维码
随时随地手机看文章

越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC。 新型Σ-Δ转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。Σ-Δ转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,Σ-ΔADC的制造成本非常低廉。

  一、Σ-ΔADC工作原理

  要理解Σ-ΔADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。

  1. 过采样

  首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样--按照 Nyquist定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。

  如果将采样频率提高一个过采样系数k,即采样频率为kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。Σ-Δ转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC,Σ-Δ转换器也可获得宽动态范围。

  那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。Σ-Δ转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。

  2. 噪声成形

  通过图1所示的一阶Σ-Δ调制器的工作原理,可以理解噪声成形的工作机制。

  


  图1 Σ-Δ调制器

  Σ-Δ调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放大器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中"1"的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的"1",反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化。

  现在,如果对噪声成形后的Σ-Δ调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

  在Σ-Δ调制器中采用更多的积分与求和环节,可以提供更高阶数的量化噪声成形。例如,一个二阶Σ-Δ调制器在每两倍的过采样率下可改善SNR 15dB。图2显示了Σ-Δ调制器的阶数、过采样率和能够获得的SNR三者之间的关系。

  

  图2 SNR与过采样率的关系

  3. 数字滤波和抽取

  Σ-Δ调制器以采样速率输出1bit数据流,频率可高达MHz量级。数字滤波和抽取的目的是从该数据流中提取出有用的信息,并将数据速率降低到可用的水平。

  Σ-ΔADC中的数字滤波器对1bit数据流求平均,移去带外量化噪声并改善ADC的分辨率。数字滤波器决定了信号带宽、建立时间和阻带抑制。

  Σ-Δ转换器中广泛采用的滤波器拓扑是SINC3,一种具有低通特性的滤波器。这种滤波器的一个主要优点是具有陷波特性,可以将陷波点设在和电力线相同的频率,抑制其干扰。陷波点直接相关于输出数据速率(转换时间的倒数)。SINC3滤波器的建立时间三倍于转换时间。例如,陷波点设在60Hz时(60Hz数据速率),建立时间为3/60Hz=50ms。有些应用要求更快的建立时间,而对分辨率的要求较低。对于这些应用,新型ADC诸如MAX1400系列允许用户选择滤波器类型SINC1或SINC3。SINC1滤波器的建立时间只有一个数据周期,对于前面的举例则为1/60Hz=16.7ms。由于带宽被输出数字滤波器降低,输出数据速率可低于原始采样速率,但仍满足Nyquist定律。这可通过保留某些采样而丢弃其余采样来实现,这个过程就是所谓的按M因子"抽取"。M因子为抽取比例,可以是任何整数值。在选择抽取因子时应该使输出数据速率高于两倍的信号带宽。这样,如果以fs的频率对输入信号采样,滤波后的输出数据速率可降低至fs /M,而不会丢失任何信息。

  二、MAXIM的新型Σ-ΔADC

  新型高集成度Σ-ΔADC正在得到越来越广泛的应用,这种ADC只需极少外接元件就可直接处理微弱信号。MAX1402便是这种新一代ADC的一个范例,大多数信号处理功能已被集成于芯片内部,可视为一个片上系统,如图3所示。该器件在480sps工作速率下可提供16bit精度,4800sps时精度达12bit,工作模式下仅消耗250μA的电流,掉电模式仅消耗2μA。信号通道包含一个灵活的输入多路复用器,可被设置为3路全差分信号或5路伪差分信号、2个斩波放大器,1个可编程PGA(增益从1"128)、1个用于消除系统偏移的粗调DAC和1个二阶Σ-Δ调制器。调制器产生的1bit数据流被送往一个集成的数字滤波器进行精处理(配置为SINC1或SINC3)。转换结果可通过SPITM/QSPITM兼容的三线串行接口读取。另外,该芯片还包含有2个全差分输入通道,用于系统校准(失调和增益);2个匹配的200μA电流源,用于传感器激励(例如可用于3线/4线RTD);2个"泵出"电流,用于检测选定传感器的完整性。通过串行接口访问器件内部的8个片内寄存器,可对器件的工作模式进行编程。输入通道可以在外部命令的控制下进行采样或者连续采样,通过SCAN控制位设定,转换结果中附加有3bit"通道标识"位,用来确定输入通道。

  

MAX1402原理框图

  图3 MAX1402原理框图

  两个附加的校准通道CALOFF和CALGAIN可用来校准测量系统。此时可将CALOFF输入连接到地,将CALGAIN输入连接到参考电压。对上述通道的测量结果求取平均后可用来对测量结果进行校准。

  三、Σ-ΔADC的应用

  1. 热电偶测量及冷端补偿

  如图4所示,在本应用中,MAX1402工作在缓冲方式,以便允许在前端采用比较大的去耦电容(用来消除热电偶引线拾取的噪声)。为适应输入缓冲器的共模范围,采用参考电压对AIN2输入加以偏置。在使用热电偶测温时,要获得精确的测量结果,必须进行冷端补偿。热电偶输出电压可表示为

  V=α(t1-tref)

  其中α是与热电偶材料有关的Seebeck常数,t1是待测温度,tref是接线盒处的温度。为了对tref造成的误差进行补偿,可以在热电偶输出端采用二极管补偿;也可以测出接线盒处的温度,然后用软件进行补偿。在本例中,差分输入通道AIN3、AIN4被用来测量P-N结的温度(用内部200μA电流源加以偏置)。

  

热电偶测量及冷端补偿

  图4 热电偶测量及冷端补偿

  2.3线和4线RTD测量

  铂电阻温度传感器(RTD)被许多需要测量温度的应用所优选,因为它们具有优异的精度和互换性。一个在0℃时具有100Ω电阻的RTD,到+266℃时电阻会达到200Ω,灵敏度非常低,约为ΔR/Δt=100Ω/266℃。200μA的激励电流在0℃时可产生20mV输出,+266℃时输出40mV。MAX1402可直接处理这种低电平的信号。

  根据不同应用,引线电阻对于测量精度会产生不同程度的影响。一般来讲,如果RTD靠近转换器,采用最简单的两线结构即可;而当RTD比较远时,引线电阻会叠加入RTD阻抗,并给测量结果引入显著误差。这种情况通常采用3线或4线RTD配置,如图5所示。

  

  图5 3线和4线RTD测量

  MAX1402内部两个匹配的200μA电流源可用来补偿3线或4线RTD配置中引线电阻造成的误差。在3线配置中,两个匹配的200μA电流源分别流过RL1和RL2,这样,AIN1和AIN2端的差分电压将不受引线电阻的影响。这种补偿方法成立的前提是两条引线材质相同,并具有相同的长度,还要求两个电流源的温度系数精确匹配 (MAX1402为5×10-6/℃)。4线配置中引线电阻将不会引入任何误差,因为在连接到AIN1和AIN2的测量引线中基本上没有电流流过。在此配置中,电流源OUT1被用来激励RTD传感器,电流源OUT2被用来产生参考电压。在这种比例型配置中,RTD的温漂误差(由RTD激励电流的温漂引起)被参考电压的漂移补偿。

  3. 智能4"20mA变送器

  老式的4"20mA变送器采用一个现场安装的敏感元件感测一些物理信息,例如压力或温度等,然后产生一个正比于待测物理量的电流,电流的变化范围标准化为4"20mA。电流环具有很多优点:测量信号对于噪声不敏感;可以方便地进行远端供电。第二代4"20mA变送器在远端进行一些信号处理,通常采用微控制器和数据转换器,如图6所示。这种变送器首先将信号数字化,然后采用微控制器内置的算法进行处理,对增益和零点进行标准化,对传感器进行线性化,最后再将信号转换到模拟域,作为一个标准电流通过环路传送。第三代4"20mA变送器被称为"灵巧且智能",实际上是在前述功能的基础上增加了数字通信(和传统的4"20mA信号共用同一条双绞线)。利用通信信道可以传送一些控制和诊断信号。MAX1402这样的低功耗器件对于此类应用非常适合,250μA的功耗可以为变送器中的其余电路节省出可观的功率。智能变送器所采用的通信标准是Hart协议。这是一种基于Bell 202电信标准的通信协议,工作于频移键控方式(FSK)。数字信号由两种频率组成:1200Hz和2200Hz,分别对应于数码1和0。两种频率的正弦波叠加在直流模拟信号上,通过同一条电缆同时传送。因为FSK信号的平均值总是零,因此4"20mA模拟信号不会受到影响。在不干扰模拟信号的前提下,数字通信信号具有每秒更新2"3个数据的响应速度。通信所需的最小环路阻抗是23Ω。

  

  图6 智能4"20mA变送器

  小结

  在高集成度调理系统出现之前,过程控制通常采用多个独立的芯片实现信号调理和处理。Σ-Δ技术降低了这部分电路的成本、空间需求和功率需求(事实上多数应用只需要+3V/+5V单电源)。这种特性尤其适合于电池供电的便携系统。元件数量的降低同时还改善了系统的可靠性。

关键字:Σ-ΔADC  转换器 编辑:神话 引用地址:Σ-ΔADC转换器工作原理及应用分析

上一篇:电子线路CAD模拟软件在高频电路分析中的挑战
下一篇:微捷码携手MunEDA帮助设计师显著提高最先进模拟

推荐阅读最新更新时间:2023-10-12 20:35

LLC谐振转换器可提升DC-DC效率
近年来,日益增长的电源需求已直接使得用数字控制实现AC-DC和DC-DC电源转换成为最新趋势。数字控制具备了设计灵活性、高性能和高可靠性。为了实现更高效的电源,人们正在考虑使用不同的拓扑结构实现DC-DC转换。本文将讨论电感、电感、电容(LLC)谐振转换器的数字控制、谐振转换器的优势以及数字控制的整体优势。    数字控制解决对电源的需求 由于许多电源在大部分时间内工作负载远低于最大负载或是工作效率最高时的负载,在正常模式和低功耗模式下,经常要求提高效率。例如,80 PLUS计划要求115V电源在20%、50%和100%的额定负载下至少达到80%的效率。在这些工作点实现更高效率可获得铜级、银级、黄金级或白金级的评级。对于230
[电源管理]
LLC谐振<font color='red'>转换器</font>可提升DC-DC效率
转换器电压参考设计解决方案
  当您在系统中使用一个 8 到 14 位模数 转换器  (ADC) 时,理解 转换器 的电压参考通路至关重要。图 1 所示为一款可适应 ADC 参考输入动态的电路。图中,电压参考芯片为转换过程和电容器 CL1 提供电压基底 (voltage-foundation),旨在吸收 ADC 的内部参考电路 [REF 1] 电流峰值和滤波器参考噪声。本电路中,不仅仅降低电压参考噪声很重要,对内部电压参考放大器稳定性进行平衡也很重要。      图 1 在参考和 ADC 之间安装有低通滤波器的 8 到 14 位模数 转换器 的串联电压参考电路利用该电路解决噪声问题时,ADC 传输函数(方程式 1)表明了电压参考噪声的作用。   公式中,V
[电源管理]
<font color='red'>转换器</font>电压参考设计解决方案
高精度高速A/D转换器时钟稳定电路设计
进入21世纪后,人类社会已全面进入信息时代,信息产业成为了现代社会最重要的支柱和最主要的产业,伴随着半导体技术、数字信号处理技术及通信技术的飞速发展,A/D、D/A转换器近年也呈现高速发展趋势,而随着高速、高精度A/D转换器(ADC)的发展,尤其是能直接进行中频采样的高分辨率数据转换器的上市,对稳定的采样时钟的需求越来越迫切,随着通信系统中的时钟速度迈入GHz级,相位噪声和时钟抖动已成为模拟设计中必须要考虑的因素。 数据转换器的主要作用要么是由定期的时间采样产生模拟波形,要么是由一个模拟信号产生一系列定期的时间采样。因此,采样时钟的稳定性十分重要,从数据转换器的角度来看,这种不稳定性(亦即随机的时钟抖动),会在模数转换器何时对
[模拟电子]
stm32使用DMA传输9路ADC使用中断处理数据
使用中断方式的好处就是在其它地方不会调用到DMA传输BUF。如果不小心调用或修改,可能会死机。具体原因没有深究。 注意中断函数是否和.s文件里面一致,否则也会死机。 根据需求去修改中断函数内容。 dma_adc.h #ifndef _DMA_ADC_ #define _DMA_ADC_ #include sys.h #define ADC1_DR_Address ((u32)0x40012400+0X4C) extern u16 ADC_buf ; //DMA传输BUF extern u32 ADC_BUF ; //滤波后保存BUF extern u8 ADC_BUF_flag; //滤波后完成标志
[单片机]
一种升压型PFM控制DC/DC转换器
引言   各种由电池供电的电子产品,如手提电脑、手机、数码相机、PDA等的电源管理系统都需要DC/DC转换器,因此,DC/DC转换器的应用越来越广泛。它的实现及控制方式也多种多样,但输出精度、转换效率、启动电压等是DC/DC转换器中的核心问题。本文介绍了一款结构简单、功能完备、输出精度高、功耗低的升压型PFM控制DC/DC转换器。   升压型DC/DC转换器结构   a.功能框图和工作原理   从传统升压型DC/DC转换器的结构和工作原理可以看出,其核心问题是驱动电路对开关晶体管M的控制,本文提出了一种升压型PFM控制DC/DC转换器,采用内置的MOSFET作为开关管,包括基准电压源、误差比较器、运放、PFM
[工业控制]
一种升压型PFM控制DC/DC<font color='red'>转换器</font>
降低LED照明中LLC谐振转换器的待机功耗
导言 与传统的照明灯相比,LED灯具有高效率和长寿命特性,因而正在成为首选的灯具类型,以期降低室内和室外照明的能耗。设计用于LED灯供电的开关电源也应该具有高效率。除了在工作过程中具有高功率转换效率之外,开关电源的待机功耗正在成为关注的焦点。在不远的将来,待机功耗有望调整到低于1W,甚至300mW。本文将讨论一种简单但是有效的降低待机功耗的方法。采用合适的控制IC和优化的变压器设计,可以大幅降低待机功耗。 谐振拓扑 由于功率额定值和需要功率因数校正的原因,LED街灯的开关电源通常采用两级配置。对于下游转换器,引入了几种DC-DC功率转换拓扑,以便在获得高功率密度的同时,降低开关损耗、器件应力以及射频干扰。其中,谐振转换器被证
[电源管理]
降低LED照明中LLC谐振<font color='red'>转换器</font>的待机功耗
一种基于AIT2139的视频转换器设计
摘要:AIT2139是一种单片、晶控、全数字视频信号处理器。文章在介绍视频转换芯片AIT2139的基础上,给出了用其设计VGA-TV视频转换器的原理和实现方法。 关键词:VGA-TV;视频转换器;AIT2139;多媒体教学 1 引言 在现代教学尤其是高等教育过程中多媒体教学因其交互性强、高效灵活而逐渐成为一种普及的教学方式。 为方便多媒体教学的开展,笔者选用AIT2139视频转换芯片设计了一个VGA—TV视频转换器。该转换器可将计算机的VGA信号转换为广播质量的NTSC制或PAL制视频信号输出到大屏幕电视机上,从而实现画面的冻结、缩放和平移等辅助功能。同时,其视频信号也可通过转换器提供的接口输出到计算机显示器上。
[手机便携]
基于电磁流量计信号转换器的校验器设计方法研究
   一 前言:   电磁流量计信号转换器的校验器是一种对电磁流量计信号转换器进行性能测试及标定的装置,已有的电磁流量计信号转换器是由一系列高精度的电阻网络组成,一般只能进行定点的测试及标定,不同厂家的转换器的放大倍数等参数不同,因此,这样的电磁流量计信号转换器的校验器只能在无监测条件下对特定电磁流量计信号转换器进行定点的测试及标定。限制了电磁流量计应用。    二 设计思路:   设计的电磁流量计信号转换器的校验器包括待校验的外部电磁流量计信号转换器和输出模拟电磁流量计要测量的流体流速信号的电阻网络。利用电磁流量计信号转换器输出的励磁电流提供电源及同步信号,得到模拟电磁流量计传感器的输出信号,该模拟信号相对大小
[模拟电子]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved