基于无线通信技术的数据记录系统

最新更新时间:2012-03-06来源: 互联网关键字:无线  通信技术  数据记录 手机看文章 扫描二维码
随时随地手机看文章

根据某工业现场电子设备数据记录的要求,设计了一种基于近距离无线通信的嵌入式数据记录系统。该系统分为数据存储和数据下载两大功能组成部分:数据存储部分利用DSP和FPGA完成信号的采集和处理,并将其存储到CF卡中;数据下载部分利用红外和蓝牙无线接口,在DSP的控制下实现数据的无线下载。

  引言

  “黑匣子”是比较流行的电子记录设备之一,广泛应用于实时记录飞机、船舶、汽车等行进过程中的重要数据。记录仪的数据下载方式通常有两种:通过传输线缆下载和通过插拔存储卡下载。

  本文依据某工业现场电子设备数据记录的需求,提出了一种基于近距离无线通信的数据记录设备。该设备以红外或蓝牙方式下载数据,与传统的数据下载方式相比,下载数据时既不需要拆卸设备连接线缆或插拔存储卡,又减少了连线和插拔存储卡可能导致的接触故障。

  1 设计需求

  在某工业现场电子设备工作过程中,要求记录系统能够实时记录设备的各种电气信号及其工作时序,用于事后设备运行状况的分析以及故障排查、定位。需要实时采集记录的信号包括2路ARINC429信号、10路TTL数字信号以及16路模拟信号。采样频率应大于或等于1 kHz,记录时间为1 h左右。根据信号通道数量、数据采集速率和数据记录时间,可估算出记录系统的存储容量应大于500 MB。通常,微处理器内部的存储空间有限,故需要将采集到的数据存储到存储容量大、具有非易失性的外部存储器中。本系统使用Sandisk公司的1 GB工业级CF卡作为存储设备。

  2 系统总体设计方案

  系统采用DSP和FPGA协同控制的方案,总体设计方案如图1所示。DSP主要完成数据的实时采集和控制,FPGA的数据传输,以及与无线通信模块的数据传输;FPGA则实现数据缓存和读写CF卡的逻辑时序控制。

  

 

  DSP是主控制器。选用TI公司的16位定点DSP芯片TMS320F240。它的指令周期为50 ns,内部具有544字的RAM、224K字的可寻址存储空间、双10位模/数转换器、28个独立可编程的多路复用I/O引脚、1个异步串行通信口(SCI),以及1个同步串行通信口(SPI)。其内部资源可以满

  足系统对TTL信号和模拟信号的采集需求,通过外接ARINC429、红外和蓝牙专用接口芯片,实现ARINC429数据信号的采集和两种无线方式的通信。

  FPGA是辅助控制器,其核心为FIFO和逻辑控制电路,用于完成DSP和CF卡间数据传输。选用Altera公司CyclonelI系列的FPGA芯片EP2C20-Q240C8。它具有142个用户可使用I/O引脚、52个M4K嵌入式阵列块和18752个逻辑单元。DSP和FPGA丰富的内部资源很好地满足了系统设计的需要。

  系统主要包括数据存储和数据下载两大功能:

  ①数据存储。DSP实现对2路ARINC429信号、16路模拟信号和10路数字信号的实时采集,并将数据实时存入FPGA的FIFO中。当FIFO存储了一定量数据时,FPGA控制逻辑电路自动将FIFO中的数据写入CF卡中。

  ②数据下载。首先,DSP将系统的蓝牙和红外模块设置为从设备。当接收到工作人员所持的带有蓝牙或红外接口的地面设备发出的连接请求后,先进行鉴权,鉴权通过后与其建立连接。然后,FPGA控制逻辑电路读出CF卡中数据并存人FIFO,DSP通过查询或中断方式将FIFO中的数据通过无线通信模块发送给地面设备。

  3 各功能模块设计

  3.1 FPGA功能模块设计

  使用FPGA实现异步FIFO模块和CF卡读写模块,是本设计的重点,也是难点。

3.1.1异步FIFO模块

  数据记录设备的实时性强、数据量大。为了提高数据传输速度、避免数据堵塞,利用FPGA硬件设计上的灵活性,在其内部构建了一个宽度为16位、深度为512的异步FIFO模块,作为DSP与CF卡之间数据传输的中继站。

  

异步FIFO模块

 

  异步FIFO的结构图如图2所示。它包括4个模块:数据存储模块、写地址产生模块、读地址产生模块和标志位产生模块。FIFO的读写采用读时钟和写时钟两个时钟。写时钟同步的信号有写地址产生模块生成的写请求和写地址;读时钟同步的信号有读地址产生模块生成的读请求和读地址。写使能和读使能分别由DSP与FPGA数据传输控制逻辑和CF卡读写控制逻辑生成。标志位产生模块由读写地址关系生成FIFO存储状态标志,并反馈给主机DSP。DSP通过查询该标志来控制与FPGA的数据传输。

  3.1.2 CF卡读写模块

  CF卡读写模块分为CF卡读控制模块和CF卡写控制模块。CF卡读或写模块的设计具有相似性。这里仅介绍写CF卡的工作过程。

  首先,设置CF卡的属性寄存器。CF卡有4个属性寄存器,通常只需设置“配置选择寄存器”以选择CF卡的读写模式。CF卡的读写模式有3种:I/O模式、Memory模式和True IDE模式。本设计使用16位的Memory模式读写CF卡。Memory模式是CF卡默认的读写模式,所以在CF卡初始化过程中不需要设置“配置属性寄存器”。

  其次,设置CF卡的任务文件寄存器。本设计中使用的任务文件寄存器有:数据寄存器、扇区数寄存器、扇区号寄存器、低柱面号寄存器、高柱面号寄存器、驱动器选择/磁头寄存器和状态/命令寄存器。对它们进行没置,可选择扇区寻址方式,设定每次读写的扇区数和逻辑寻址地址,并获取CF卡状态以及输入读写命令。

  CF卡的寻址方式与计算机的硬盘操作方式类似。扇区的寻址方式有两种:物理寻址方式(CHS)和逻辑寻址方式(LBA)。本设计使用LBA寻址,对应28位LBA地址。

  磁头寄存器存放LBA地址的27~24位;柱面号寄存器存放LBA地址的23~8位;扇区号寄存器存放LBA地址的7~0位。

  

 

  写CF卡一个扇区的流程如图3所示。每次向CF卡存储数据时,应该先获取上次存储到的扇区的LBA地址,从而获得此次存储的起始扇区地址。为了记录每次存储到的扇区的地址,将LBA地址为0的扇区保留,专用于记录扇区地址。在开始一次写操作之前,应该先读取LBA地址为O的扇区,获得上次存储的LBA地址;然后加1获得此次写操作的LBA地址,并向指定的扇区写数据。

  利用QuartusII作为FPGA开发平台,使用VHDL硬件描述语言实现了FPGA与DSP的接口、异步FIFO的存储以及CF卡的读写逻辑。在QuartusII自带仿真工具下得到的写CF卡时序仿真结果如图4所示。

  

写CF卡时序仿真结果

3.2 无线通信模块设计

  3.2.1 蓝牙模块设计

  蓝牙模块采用BTM0604C2P。它内嵌蓝牙芯片BlueCore4-Ext,兼容蓝牙2.0+EDR规范,最高支持3 Mbps的数据速率,外置天线,有效距离为10 m,具有标准的UART接口。

  DSP与蓝牙模块之间通过HCI协议层建立连接。HCI(Host Controller Interface,主机控制器接口)协议,为DSP提供了一个访问蓝牙模块内部基带控制器和链路管理器的命令接口,可以获取蓝牙芯片的配置参数。

  本设计中,DSP和蓝牙模块之间采用UART方式进行通信。DSP使用的控制信号除了异步串行通信收发信号SCIRXD和SCITXD外,还有4个控制信号,分别与蓝牙模块的LNK、CLR、RTS和CTS引脚相连。其中,LNK脚用于指示蓝牙主机和从机连接是否建立,地面设备PC机为蓝牙主机,DSP作为蓝牙从机;CLR脚用于切换蓝牙模块的工作模式,包括参数设置模式和数据传输模式;RTS和CTS脚为“请求发送”和“清除发送”引脚,用于实现DSP和蓝牙模块之间的对话,使数据正常传输。

  蓝牙模块的SLEEP引脚,既可以使蓝牙模块在休眠和唤醒状态间切换,也可以用于清除蓝牙模块内嵌芯片记忆的配对主机地址。这些功能的实现由按键控制,通过区别按键的时长加以区分所需实现的功能。蓝牙模块的复位信号RESET输入低电平脉冲时有效,而且要求脉冲宽度大于5 ms。

  3.2.2 红外模块设计

  红外模块采用HP公司的红外收发器芯片HSDL_1001和红外编解码器芯片HSDL_7001,二者均遵循IrDA 1.O协议。红外信号的收发使用PWM方案,采用RZI编码调制解调,调制脉冲宽度为3/16位,调制频率为38 kHz。由于硬件接口的限制,嵌入式系统中红外通信的速率为9 600~ll5200 bps。红外数据的传输以帧为基本单位,传输过程中采用1 6位的CRC码进行数据校验。

  系统采用Maxim公司的芯片MAX3110作为DSP的SPI接口和HSDL_7001的UART接口之间的转换芯片。MAX3110和HSDL_7001均使用外部无缘晶体振荡电路供电,所用的晶振大小分别为1.843 2 MHz和3.686 4 MHz。需要下载的数据,首先经过红外编解码器编码,再通过红外收发器上集成的发光二极管以红外光信号的形式向PC机发送。

  4 系统软件设计

  系统的功能时序流程如图5所示。DSP部分程序用C语言编写,结合硬件电路对数据采集、数据传输进行处理和控制。主要的中断应用有

  ARlNC429信号采集中断和红外通信请求中断。系统的工作流程以时序控制流程为主线。系统初始化之后,进行任务选择与执行。若特定的I/O口置1,则进入数据存储程序,采集数据并存至CF卡;若I/O口置O,则进入数据下载程序,等待主设备的连接请求,鉴权并建立相应的连接,读取CF卡数据,并通过无线通信模块向主设备发送。

  

 

  结语

  该系统利用DSP与FPGA协同控制方式实现数据的采集和存储,利用红外和蓝牙模块实现数据的无线下载;用红外和蓝牙代替有线线缆和插拔存储卡等传统数据下载方式,操作方便,避免了传统方式可能造成的机械故障。

关键字:无线  通信技术  数据记录 编辑:神话 引用地址:基于无线通信技术的数据记录系统

上一篇:分析RFID通讯组件设计与应用
下一篇:RFID在血液管理中的应用

推荐阅读最新更新时间:2023-10-12 20:36

低速率无线传感器网络演示系统的设计与实现
引言 无线传感器网络能够实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的数据,并传送到需要这些信息的用户。 目前,这一领域主要的研究方面是MAC层协议和网络层路由协议。而要进行这两方面的研究,物理实验平台是必需的。 总体设计 本文设计并实现了一个比较完整的无线传感器网络演示系统,主要包括节点机、网关机和数据库系统。此系统实现了远程环境数据的采集、传输、处理及数据库管理。并且在节点数大量增加后,还可作为传感器MAC层和网络层协议的开发平台。 系统组成框图如图1所示,在传感器节点网络部分,有两个子网,各网独立工作,运行在不同的频段,一个是2.4GHz,另一个是9
[单片机]
低速率<font color='red'>无线</font>传感器网络演示系统的设计与实现
无线实时频谱分析仪的新特性简介
无线设备在工作时可能会出现周期性地挂起,干扰其他消费电子产品的工作(例如电台),或者无法完全发挥应有的功能,这些问题都会使消费者对它的技术水平和相应的产品供应商丧失信心。 为了避免这种糟糕的情况,选择一种能够满足当今无线产品设计与调试需求的高性能频谱分析仪是至关重要的,这种频谱分析仪不仅要能够检验产品的真实性能,也要能够检测高度集成的无线发射器的功能。 1 无线技术的挑战 在过去几年中,用户所接触的产品功能越来越强大,其目的在于在移动电话这种单一设备中集成多种方便实用的技术,从而增强用户的多功能体验。新的高速数据技术,例如HSDPA/HSUPA和A版本的1xEV-DO,能够为用户提供更强大的功能,例如广播视频和高速E-ma
[测试测量]
Bluetooth® Low Energy系统的开发
  在通过与智能手机和平板终端的结合来提高利便性的应用(例如钟表、健身/保健器材等)中,Bluetooth® LE(Low Energy)正得到迅速普及。在这些应用中,纽扣电池驱动的设备居多,为了实现更长的电池寿命与更高的性能,对于低功耗化的要求日益强劲。不仅如此,由于毫无无线体验经验的用户也可通过身边的智能手机等连接Bluetooth® LE,因此,Bluetooth® LE在众多产品中的应用趋势已势不可挡。另一方面,要想利用以Bluetooth® LE为首的无线系统,必须在特定的实验机构进行合标确认,并获得各国规定的无线电认证。因此,在研究从零开始构建系统时,需要充分的无线及协议相关知识,否则,极有可能在产品即将推向市场之前遇
[RF/无线]
Bluetooth® Low Energy系统的开发
无线非压缩高清晰电视解决方案分析
无线未压缩HDTV通常被称为“无线高分辨率数字多媒体接口(Wireless HDMI)”,它将改变视频显示器连接到视频源的方式。 在过去的10年当中,许多公司一直都在试图解决无线视频连接性的问题,但只取得了有限的成功,这主要是因为这种解决方案只能支持压缩视频的传输,而在大部分视频源的输出上通常都不支持这一功能。 消费电子行业也开始认识到需要无线未压缩视频链路来提供一种通用的无线HDTV接口。 利用多种有着很大差异的方法,几家新兴公司已经开始应对大量视频数据的无线传输(在1080p分辨率可实现高达3Gbps的速率)所带来的挑战。 这些方法包括: 5GHz免授权频段的WHDI技术;以超宽带(UWB)的扩展版本为基础的各
[嵌入式]
英特尔无线业务并非简单轮回
  8月31日,英特尔宣布以14亿美元的现金收购欧洲第二大半导体厂商英飞凌的无线解决方案部,从而将英飞凌的基带和射频业务揽入怀中。   这是英特尔第二次收购基带业务。第一次的收购发生在1999年10月,英特尔以大约16亿美元的现金收购了数字信号处理器厂商——DSP通信公司,英特尔进军通信领域的野心也就暴露无疑了。当时尚无智能手机,作为手机核心的基带芯片DSP还是很引人瞩目的。   到了2002年春季,英特尔在英特尔技术峰会上打着“扩展摩尔定律”的旗号,大张旗鼓地宣布进军移动通信市场,希望将PC市场的成功复制到移动通信市场。然而,英特尔在移动通信市场的进展并不如意,以至于到了2006年不得不忍痛拆分了通信业务。  
[网络通信]
增强无线网络信号的方法
无线上网的速度,除了硬件的配置,软件的设置之外,很大的程度上都取决于信号的强弱。信号弱了,其网速必然速度会缓慢。那么下文将为你提供三种方法,用于增强 无线网络 信号。   在实际使用的时候,我们也常常发现 无线信号 的覆盖范围并不如产品说明上的那样好,不免令人失望。因为在实际使用的时候,信号会受到环境等一些客观因素的影响而出现衰减,这是无法避免的。当然,对于信号的衰减,我们也并不是束手无策,在使用的时候,可以通过一些技巧,尽量将信号衰减降到最低。   一、合理摆放无线路由器的位置   由于无线信号在穿越障碍物后,尤其是在穿越金属后,信号会大幅衰减。而在我们家庭的房子里,有很多钢筋混凝土墙,所以为了增强无线网
[模拟电子]
采用LabVIEW和NI无线传感器网络监测一座名胜古迹
测量节点 作者: Juan José Cabana González - Diseño Implementación y Optimización OPIDIS Marian Chiriac - Fundación Santa María La Real Jose M. de Uña García - OPIDIS 行业: Construction 产品: WLS-9163, NI WSN-3202, NI 9791, LabVIEW 挑战: 通过监测环境因素来保护历史遗迹又而不影响遗迹原貌的。 解决方案: 使用LabVIEW, NI无线传感器网络(WSN)以及NI WLS-9163接口为Santa María de Ma
[测试测量]
采用LabVIEW和NI<font color='red'>无线</font>传感器网络监测一座名胜古迹
Silicon Laboratories推出高整合度调频发射器产品系列
Si471x 为所有便携式音频装置提供调频发射功能 专业电子元器件代理商益登科技 ( TSE:3048 )所代理的高效能模拟与混合信号 IC 领导厂商 Silicon Laboratories 日前推出高整合度调频发射器产品系列,可于精巧的 3 × 3 × 0.55 毫米的 20 接脚 QFN 封装内提供更优异的音频效能。 Si471x 调频发射器系列所需的元器件用料和耗电都少于现有解决方案,客户仅需低成本就能将无线调频音频播放能力增加到任何便携式媒体装置,包括移动电话、 MP3/ 数字媒体播放机、导航 /GPS 装置和卫星收音机。 Si471x 调频发射器系列利用 Silicon Labs 专利和
[新品]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved