浅析CMOS与CCD在内部结构与原理的差异

最新更新时间:2012-09-18来源: 互联网关键字:CMOS  CCD  内部结构 手机看文章 扫描二维码
随时随地手机看文章

无论任何产品,品质的好坏主要取决于性能的优劣,而性能优劣的关键跟产品结构和工作原理又有着较大的关系,CCD和CMOS也既如此。

  基本组成

  CCD是在MOS晶体管的基础上发展起来的,其基本结构是MOS(金属—氧化物—半导体)电容结构。它是在半导体P型硅(Si)作衬底的表面上用氧化的办法生成一层厚度约1000?~1500?的SiO2,再在SiO2表面蒸镀一层金属(如铝),在衬底和金属电极间加上一个偏置电压(称栅电压),就构成了一个MOS电容器。所以,CCD是由一行行紧密排列在硅衬底上的MOS电容器阵列构成的。

  而最基本的CMOS图像传感器是以一块杂质浓度较低的P型硅片作衬底,用扩散的方法在其表面制作两个高掺杂的N+型区作为电极,即场效应管的源极和漏极,再在硅的表面用高温氧化的方法覆盖一层二氧化硅(SiO2)的绝缘层,并在源极和漏极之间的绝缘层的上方蒸镀一层金属铝,作为场效应管的栅极。最后,在金属铝的上方放置光电二极管,这就构成了最基本的CMOS图像传感器。

  另外,在CMOS摄像器件中,电信号是从CMOS晶体管开关阵列中直接读取的,而不像CCD那样需要逐行读取。

  内部结构

  CCD成像器需有辅以较多的外围驱动电路才能工作,它仅能输出模拟电信号,这种信号要经后续的地址译码器、模数转换器,图像信号处理器等进行处理,CCD本身集成度相对较低。如有CCD数码相机常会有六个芯片组成,有的多达八片,最少也要三片,从而使相机体积不能减小,制作成本也较高。

  而CMOS成像器不需要附加的外围处理电路,它是将光电二极管、图像信号放大器、信号读取电路、模数转换器、图像信号处理器及控制器等都集成到一块芯片上,且制造加工就如半导体厂家生产集成电路的流程即可。若构成数码相机,可将数码相机的所有部件都集成到一块芯片上,即“单芯片相机”。因此,采用CMOS芯片的光电图像系统,不但能降低系统的整体成本与组装所需的时间,而且还大大缩小了系统的体积和减低了复杂度。

  工作原理

  此外,CCD是一种半导体成像器件,CCD电荷耦合器存储的电荷信息,需在同步信号控制下一位一位地实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。因而,CCD处理信息的速度相对较慢外,其耗电量也相对较大;而CMOS光电传感器在光电转换后就可取出电信号,读取比较简单,还能同时处理各像素单元的图像信息,CMOS光电传感器只需单组电源工作,耗电量小,能达到节能作用。

关键字:CMOS  CCD  内部结构 编辑:神话 引用地址:浅析CMOS与CCD在内部结构与原理的差异

上一篇:高清视频播放器是否能够HIFI
下一篇:视频编码应用的JPEG2000压缩算法实现

推荐阅读最新更新时间:2023-10-12 20:41

机器视觉系统的构成和优缺点详细解析
在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。 由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。当这些要求完全确定后
[嵌入式]
机器视觉系统的构成和优缺点详细解析
CCD传感器与CMOS传感器区别在哪里
    CMOS针对CCD最主要的优势就是非常省电,不像由二极管组成的CCD,CMOS 电路几乎没有静态电量消耗,只有在电路接通时才有电量的消耗。这就使得CMOS的耗电量只有普通CCD的1/3左右,这有助于改善人们心目中数码相机是“ 电老虎”的不良印象。CMOS主要问题是在处理CCD传感器快速变化的影像时,由于电流变化过于频繁而过热。暗电流抑制得好就问题不大,如果抑制得不好就十分容易出现杂点。 此外,CMOS与CCD的图像数据扫描方法有很大的差别。例如,如果分辨率为300万像素,那么CCD传感器可连续扫描300万个电荷,扫描的方法非常简单,就好像把水桶从一个人传给另一个人,并且只有在最后一个数据扫描完成之后才能将信号放大。
[嵌入式]
安森美CCD图像传感器增强性能
应用于智能交通、监控、医疗成像及工业检测。 新的KAI-08051 800万像素图像传感器充分利用来自Truesense Imaging的技术, 提供更高光敏度及更低读取噪声。 2014年7月15日 – 推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)以新技术增强最近收购Truesense Imaging的电荷耦合器件(CCD)图像传感器阵容,提升工业应用的成像性能。 新的KAI-08051图像传感器比上一代器件,提供更高光敏度、更低读取噪声及更高色彩精度,扩充800万像素图像捕获的商机,用于智能交通、监控、医疗成像及工业检测等要求极严的成像应用。
[嵌入式]
一文学会高效比较CMOS开关和固态继电器性能
一文学会高效比较CMOS开关和固态继电器性能 源极和漏极之间的关断电容CDS(OFF)可用来衡量关断开关后,源极信号耦合到漏极的能力。它是固态继电器(如PhotoMOS®、OptoMOS®、光继电器或MOSFET继电器)中常见的规格参数,在固态继电器数据手册中通常称为输出电容COUT。CMOS开关通常不包含此规格参数,但关断隔离度是表征相同现象的另一种方法,关断隔离度定义为,开关关断状态下,耦合到漏极的源极的信号量。ADI将在本文讨论如何从关断隔离度推导出COUT,以及如何通过它来更有效地比较固态继电器和CMOS开关的性能。这一点很重要,因为CMOS开关适合许多使用固态继电器的应用,例如切换直流信号和高速交流信号。
[电源管理]
一文学会高效比较<font color='red'>CMOS</font>开关和固态继电器性能
CMOS图像传感器步入划时代
I. 引言 早于上世纪九十年代初,有意见认为电荷耦合器件(Charge Coupled Device,CCD) 日渐式微,最终将成为“科技恐龙” 。如果用索尼公司(Sony) 2015年的发布来看待,这个预言好像也有点道理:当时索尼公司正式发布终止量产CCD 时间表,并开始接收最后订单。虽然多年前业界已预计这是迟早出现的举措,但是索尼这一发布仍然震惊了专业成像社群 。值得一提的是很多工业或专业应用(就是CMOS 图像传感器 (CIS) 的重点市场)到现在仍然基于CCD传感器技术。到底CCD有什么特点优于CIS,使其更具吸引力呢?在发展初期,CCD和CIS两种技术是共存的;后来CCD被视为能够满足严格图像质量要求的高阶技术,而同
[传感器]
<font color='red'>CMOS</font>图像传感器步入划时代
一种基于CMOS的智能手表电路设计
  随着移动技术的发展,许多传统的电子产品也开始增加移动方面的功能,比如过去只能用来看时间的手表,现今也可以通过智能手机或家庭网络与互联网相连,显示来电信息、Twitter和新闻feeds、天气信息等内容。这种新手表可被称作智能手表,某些已经上市销售,某些还处于样品测试阶段。这类产品主要是为消费者在不方便使用智能手机的情况下使用而设计的,比如正在骑自行车或手上提满了东西的时候。    电路原理: 在摩托罗拉平均温差为160或161华氏度的定制CMOS电路的输入端使用一个32.768 kHz的晶体管,该晶体管和步进电机一起可驱动传统的钟表指针。该电路包括了三个反相振荡器,16个计数触发器和一些电动机缓冲器。
[电源管理]
一种基于<font color='red'>CMOS</font>的智能手表电路设计
三极管的结构,三极管内部结构
三极管的内部结构 为两个PN结,由三层半导体区形成的。 三极管的结构特点: (1) 基区很薄,且掺杂浓度低;(2) 发射区掺杂浓度比基区和集电区高得多;(3) 集电结的面积比发射结大。 三极管内部结构 导体二极管内部只有一个PN结,若在半导体二极管P型半导体的旁边,再加上一块N型半导体如图5-1(a)所示。由图5-1(a)可见,这种结构的器件内部有两个PN结,且N型半导体和P型半导体交错排列形成三个区,分别称为发射区,基区和集电区。从三个区引出的引脚分别称为发射极,基极和集电极,用符号e、b、c来表示。处在发射区和基区交界处的PN结称为发射结;处在基区和集电区交界处的PN结称为集电结。具有这种
[模拟电子]
三极管的结构,三极管<font color='red'>内部结构</font>
中国首颗物联网核心芯片“唐芯一号”亮相西安
日前在西安曲江国际会展中心召开的第四届中国民营科技产品博览会上,本土IC设计公司西安优势微电子公司推出了中国内首颗物联网核心芯片——“唐芯一号”。    “唐芯一号”核心芯片是中国第一颗完全自主知识产权的2.4GHz超低功耗射频可编程片上系统(PSoC),采用0.18μm数字CMOS工艺,集无线射频收发、数字基带、数据处理、电源管理于一体,具有无线通信、无线组网、无线传感、无线控制、数据处理等能力,是目前同类芯片中集成度最高、静态功耗最小的低功耗RFIC产品。    “物联网”被称为继计算机、互联网之后,世界信息产业的第三次浪潮,在短短几个月内,已经成为全社会和产业界热切关注的宠儿。专家指出,物联网已经成为信息
[半导体设计/制造]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved