如何看懂电路图(四):振荡和调制电路详解一

最新更新时间:2012-09-29来源: 互联网关键字:电路图  振荡  调制电路 手机看文章 扫描二维码
随时随地手机看文章

振荡电路的用途和振荡条件

  不需要外加信号就能自动地把直流电能转换成具有一定振幅和一定频率的交流信号的电路就称为振荡电路或振荡器。这种现象也叫做自激振荡。或者说,能够产生交流信号的电路就叫做振荡电路。

  一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 0 能通过,使振荡器产生单一频率的输出。

  振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 u f 和输入电压 U i 要相等,这是振幅平衡条件。二是 u f 和 u i 必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。

  振荡器按振荡频率的高低可分成超低频( 20 赫以下)、低频( 20 赫~ 200 千赫)、高频( 200 千赫~ 30 兆赫)和超高频( 10 兆赫~ 350 兆赫)等几种。按振荡波形可分成正弦波振荡和非正弦波振荡两类。

  正弦波振荡器按照选频网络所用的元件可以分成 LC 振荡器、 RC 振荡器和石英晶体振荡器三种。石英晶体振荡器有很高的频率稳定度,只在要求很高的场合使用。在一般家用电器中,大量使用着各种 L C 振荡器和 RC 振荡器。

  LC 振荡器

  LC 振荡器的选频网络是 LC 谐振电路。它们的振荡频率都比较高,常见电路有 3 种。

  ( 1 )变压器反馈 LC 振荡电路

  图 1 ( a )是变压器反馈 LC 振荡电路。晶体管 VT 是共发射极放大器。变压器 T 的初级是起选频作用的 LC 谐振电路,变压器 T 的次级向放大器输入提供正反馈信号。接通电源时, LC 回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率 f 0 相同的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级 L1 、 L2 的耦合又送回到晶体管 V 的基极。从图 1 ( b )看到,只要接法没有错误,这个反馈信号电压是和输入信号电压相位相同的,也就是说,它是正反馈。因此电路的振荡迅速加强并最后稳定下来。

  

  变压器反馈 LC 振荡电路的特点是:频率范围宽、容易起振,但频率稳定度不高。它的振荡频率是: f 0 =1 / 2π LC 。常用于产生几十千赫到几十兆赫的正弦波信号。

( 2 )电感三点式振荡电路

  

  图 2 ( a )是另一种常用的电感三点式振荡电路。图中电感 L1 、 L2 和电容 C 组成起选频作用的谐振电路。从 L2 上取出反馈电压加到晶体管 VT 的基极。从图 2 ( b )看到,晶体管的输入电压和反馈电压是同相的,满足相位平衡条件的,因此电路能起振。由于晶体管的 3 个极是分别接在电感的 3 个点上的,因此被称为电感三点式振荡电路。

  电感三点式振荡电路的特点是:频率范围宽、容易起振,但输出含有较多高次调波,波形较差。它的振荡频率是: f 0 =1/2π LC ,其中 L=L1 + L2 + 2M 。常用于产生几十兆赫以下的正弦波信号。

  ( 3 )电容三点式振荡电路

  还有一种常用的振荡电路是电容三点式振荡电路,见图 3 ( a )。图中电感 L 和电容 C1 、 C2 组成起选频作用的谐振电路,从电容 C2 上取出反馈电压加到晶体管 VT 的基极。从图 3 ( b )看到,晶体管的输入电压和反馈电压同相,满足相位平衡条件,因此电路能起振。由于电路中晶体管的 3 个极分别接在电容 C1 、 C2 的 3 个点上,因此被称为电容三点式振荡电路。

  

  电容三点式振荡电路的特点是:频率稳定度较高,输出波形好,频率可以高达 100 兆赫以上,但频率调节范围较小,因此适合于作固定频率的振荡器。它的振荡频率是: f 0 =1/2π LC ,其中 C= C 1 C 2 C 1 +C 2 。

  上面 3 种振荡电路中的放大器都是用的共发射极电路。共发射极接法的振荡器增益较高,容易起振。也可以把振荡电路中的放大器接成共基极电路形式。共基极接法的振荡器振荡频率比较高,而且频率稳定性好。

RC 振荡器

  RC 振荡器的选频网络是 RC 电路,它们的振荡频率比较低。常用的电路有两种。

  ( 1 ) RC 相移振荡电路

  图 4 ( a )是 RC 相移振荡电路。电路中的 3 节 RC 网络同时起到选频和正反馈的作用。从图 4 ( b )的交流等效电路看到:因为是单级共发射极放大电路,晶体管 VT 的输出电压 U o 与输出电压 U i 在相位上是相差 180° 。当输出电压经过 RC 网络后,变成反馈电压 U f 又送到输入端时,由于 RC 网络只对某个特定频率 f 0 的电压产生 180° 的相移,所以只有频率为 f 0 的信号电压才是正反馈而使电路起振。可见 RC 网络既是选频网络,又是正反馈电路的一部分。

  

  RC 相移振荡电路的特点是:电路简单、经济,但稳定性不高,而且调节不方便。一般都用作固定频率振荡器和要求不太高的场合。它的振荡频率是:当 3 节 RC

  网络的参数相同时: f 0 = 1 2π 6RC 。频率一般为几十千赫。

  ( 2 ) RC 桥式振荡电路

  

  图 5 ( a )是一种常见的 RC 桥式振荡电路。图中左侧的 R1C1 和 R2C2 串并联电路就是它的选频网络。这个选频网络又是正反馈电路的一部分。这个选频网络对某个特定频率为 f 0 的信号电压没有相移(相移为 0° ),其它频率的电压都有大小不等的相移。由于放大器有 2 级,从 V2 输出端取出的反馈电压 U f 是和放大器输入电压同相的( 2 级相移 360°=0° )。因此反馈电压经选频网络送回到 VT1 的输入端时,只有某个特定频率为 f 0 的电压才能满足相位平衡条件而起振。可见 RC 串并联电路同时起到了选频和正反馈的作用。

  实际上为了提高振荡器的工作质量,电路中还加有由 R t 和 R E1 组成的串联电压负反馈电路。其中 R t 是一个有负温度系数的热敏电阻,它对电路能起到稳定振荡幅度和减小非线性失真的作用。从图 5 ( b )的等效电路看到,这个振荡电路是一个桥形电路。 R1C1 、 R2C2 、 R t 和 R E1 分别是电桥的 4 个臂,放大器的输入和输出分别接在电桥的两个对角线上,所以被称为 RC 桥式振荡电路。

  RC 桥式振荡电路的性能比 RC 相移振荡电路好。它的稳定性高、非线性失真小,频率调节方便。它的振荡频率是:当 R1=R2=R 、 C1=C2=C 时 f 0 = 1 2πRC 。它的频率范围从 1 赫~ 1 兆赫。

关键字:电路图  振荡  调制电路 编辑:神话 引用地址:如何看懂电路图(四):振荡和调制电路详解一

上一篇:如何看懂电路图(五):脉冲电路详解
下一篇:如何看懂电路图(四):振荡和调制电路详解

推荐阅读最新更新时间:2023-10-12 20:42

VMOS管理结构及输出特性曲线电路图
根据结构的不同,VMOS管分为两大类:VVMOS管,即垂直导电V形槽MOS管;VDMOS管,即垂直导电双扩散MOS管。
[电源管理]
VMOS管理结构及输出特性曲线<font color='red'>电路图</font>
自动对光停车电路图
将此电路装入玩具汽车,汽车就能自动对光停车。
[模拟电子]
自动对光停车<font color='red'>电路图</font>
AM收音机接收器的电路图
这是mini AM Radio接收器的电路图。 所有通用晶体管都应该在这个电路中工作,你可以在这个电路中使用 BC549 晶体管。 该电路使用紧凑型三晶体管再生接收器,具有固定反馈。它在原理上类似于现在被 MK484 取代的 ZN414 无线电 IC。设计简单,接收机灵敏度和选择性好。 所有连接都应该很短,适合使用 veroboard 或标签条布局。调谐电容器有固定板和移动板。移动板应连接到槽路的“冷”端,这是 Q1 的底座,而固定板应连接到线圈的“热端”,即 R1 和 C1 的连接点。如果电容器上的连接接反,则将手靠近电容器会导致不必要的稳定性和振荡。 AM 收音机接收器 PCB 设计: 下图是铜层的实际尺寸(比例
[嵌入式]
AM收音机接收器的<font color='red'>电路图</font>
高集成度ECG前端,用于病人监护系统(电路图
本电路是高度集成的心电图(ECG)前端,用于电池供电式病人监护应用。图1显示典型5导联(4个肢体导联和1个心前胸导联)ECG测量系统物理连接的顶层框图,该系统集成了呼吸与脉搏检测功能。这种配置通常用于便携式遥测ECG测量或线路供电式床边仪器的最小导联设置。   在皮肤表面测量时,ECG信号幅度较小,通常为1 mV。有关病人的健康及其它参数的重要信息都蕴藏在那个小信号之中,因此要求器件具有μV级的测量灵敏度。就系统而言,许多医疗标准都要求最大噪声不超过30 μVp-p;然而,设计人员通常把这一数值定的更低。因此,设计满足系统层面需求的解决方案时,必须考虑所有的噪声源。   ADAS1000的额定噪声性能针对多种不同的工作
[模拟电子]
高集成度ECG前端,用于病人监护系统(<font color='red'>电路图</font>)
UC3842组成的实用电路图
由UC3842组成的实用电路见图4,其工作原理 图 UC3842组成的实用电路图 宽度变窄,达到稳压目的。   过流保护原理:当负载电流超过额定值或输出短路,引起开关管V4电流增加,R7上的电压反馈至3脚,当R7上的电压大于1V时,通过内部电流放大器使导通宽度变窄,输出电压下降,同时也使UC3842工作电压下降。当下降至整定电压以下时,过流保护电路工作,达到保护功率管的目的。短路现象消失后,电源自动恢复正常工作。   过压保护:当因某种原因使输出电压过高时,稳压管V6导通,从而触发晶闸管V7导通,使输出端短路,可见过压保护是以过流保护的形式出现的。
[电源管理]
UC3842组成的实用<font color='red'>电路图</font>
低失真正弦波振荡电路图
低失真正弦波振荡电路图
[模拟电子]
低失真正弦波<font color='red'>振荡</font><font color='red'>电路图</font>
采用碳纳米管互连的首颗1GHz芯片
  利用CMOS工艺实现的铜互连是实现速度更快的未来芯片所面临的瓶颈。一种解决方案可能就是采用具有更高电子迁移率的碳纳米管。然而,迄今为止,研究人员一直无法完善把纳米级碳管制作在芯片上正确位置的方法。   现在,有一个研究小组认为他们找到了解决问题的答案。   最近,斯坦福大学与东芝公司合作,设计了全球第一个采用纳米管作为互连的CMOS电路,该电路在TSMC制造。在1.1万晶体管芯片上构建的256个环形振荡器实现了1GHz的运行速度,可与其它先进的CMOS芯片媲美(如iPhone处理器运行在700MHz)。   许多研究实验室正在研究采用纳米管作为互连芯片,因为它们具有比铜更高的电子迁移率,并且生长的几何尺寸更小
[半导体设计/制造]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved