PIC16C84是8位CMOS EEPROM单片机。它有高性能的类似于RISC 的指令,共有35条单字节的指令,所有的指令除程序分支指令需要两个指令周期外,都只需要一个指令周期。当主振频率为10MHZ时一个指令周期为400ns。程序指令的宽度为14位,在芯片内有1K×14的EEPROM程序存储器 。
数据的宽度为8位,在芯片内有36×8的静态RAM的通用寄存器,64×8的EEPROM的数据存储器。8级深度的硬堆栈。具有直接、间接、相对寻址方式。有4个中断源;外部RBO/INT引脚;TMRO计时器溢出,PORTB<7: 4>引脚上信号的改变;数据写入EEPROM完成。
数据存储器的擦/写可达1000000次,数据的保持大于40年。有13位的I/O引脚,可以单独直接控制。每一个I/O引脚均可承受25mA的输入/输出电流,这样就可以直接驱动LED。有8位的计时/计数器(TMRO)并带有8位可编程的预分频。有通电复位(POR);功耗上升(POWER-UP)计时器(PWRT); 振荡器起动计时器(OST);看门狗计时器(WDT),为了能可靠工作 ,它有自己的RC振荡器。有代码保证功能。有SLEEP(睡眠)方式,以节者功耗。有4种可供选择的振荡器:RC(低成本的RC振荡器);XT(标准的晶体/谐振器);HS(高速晶体/谐振器);LP(低功耗,低 频率的晶体)。工作电压的范围宽2.0V~ 6.0V。
PIC16C84单片机最大的特点是具有1K×14位的电可擦除的程序存储器和64×8位的电可擦除的数据存储器,这将为系统开发和各种应用提供了 更多的方便。
时钟和指令周期
从OSCI来的时钟输入在内部经4分频。产生互不叠加的时佛周期,每4个时钟周期(θ1,θ2,θ3,θ4)组成一个指令周期。在内部、程序计数内对每一个θ1加1,然后从程序存储器取指令,取出的指令在θ4时放入指令寄存内。在下一个θ1利θ4期间指令被执行。取指令和执行指令采用流水线技术,一个指令周期取指令,下一个指令周期执行已取出的指令,同时又取出下一条指令。所以每条指令执行,CPU的时间是一个指令周期。当某条指令要改变程序计数器的 内容时(如分支指令),则需要两个指令周期才能完成。被取出的指 令在执行指令周期的θ1时放入指令寄存器,在θ2,θ3,θ4时译码 并执行指令。在θ2期间读操作在θ4期间写操作数。
存贮器的结构
在PIC16C84单片机中有两个存储器块。即程序存储器和数据存储器。每一块具有它自己的总线,即可在同一时钟周期访问每一块。数据存储器被进一步分成通用RAM和专用功能寄存器(SFRs)。专用功能寄存器用于控制外设模式。数据存储器也包含有数据EEPROM存 储器。这个存储器并不直接映象到数据存储器,而是间接映象的。即由一个间接寻址的指针指明要读/写的数据EEPROM的地址。64个字节 的数据EEPROM具有的地址是0~3FH。
3-1程序存储器的结构
PIC16C84单片机具有13位程序计数器,寻址能力为8K×14位的程序存储器空间。实际上对于PIC16C84能供使用的只有1K×14位的程序存储器(地址为0000~ 03FFH)。寻址上述单元,如超过了上述地址范围, 地址将卷绕。例对20H单元与地址420H,820H,C20H,1020H,1420H,1820H,1C20H都将访问到它。系统复位时PC的值为0000H,中断向量是 0004H。
PC<12:0>
CALL,RETURN 13
RETFIE,RETLW 1级堆栈
.
8级堆栈
复位地址 0000H
外部中断向量 0004H
用户存贮空间 3FFH
1FFFH
3-2数据存储器的结构
数据存储器被分成两个区域。第一个是专用功能寄存器(SFR)区域,第二是通用寄存器区域(GPR)。SFR控制着器件的操作。数据存储器被分成0块和1块。通过程序时状态寄存器STATUS中的RP1: RP0位 的设置来选择0块(RP1=0,RP0=0)或1块(RP0=1)。
其中带有斜线的部分是实际不存在的单元,带有*号的单元没有物理寄存。指令MOVWF和MOVF可以把W寄存器的值(W寄存器是器件内部的工作 寄存器)传送到寄存器文件(“F”)中的任何单元,反之也可以。整个数据存储器可以直接寻址或通过文件选择寄存器(FSR)进行间接寻址。间接寻址要根据状态寄存器的RP1:RP0位的状态决定访问数据存 储器的某一块,数据存储器的两块中都被分成通用寄存器和专用寄存 器。其中每块低地址单元留作专用寄存器,专用寄存器以上地址的单 元为通用寄存器,它们是静态RAM。
1.通用寄存器文件 寄存器文件可以直接寻址或通过FSR间接寻址。所有器件都有一定 数量的通用寄存器(GPR),它们的数据宽度是8位。PIC16C84只有36个字节的通用寄存器,地址为0CH~ 2FH,对1块对应的8CH~ AFH的访问都将实际访问0CH~ 2FH(地址的高位被忽略)。
文件地址
00 间接寻址地址(*) 间接寻址地址(*) 80
01 TMRO OPTION 81
02 PCL PCL 8 2
03 STATUS STATUS 83
04 FSR FSR 8 4
05 PORTA TRISA 85
06 PORTB TRISB 86
07 87
08 EEDATA EECON1 88
09 EEADR EECON2(*) 89
0A PCLATH PCLATH 8A
0B INTCON INTCON 8B
36个通用寄 映象到 存器(SRAM) 0块 2F AF 7F FF 0块 1块
2.专用功能寄存器
CPU和外设使用专用寄存器以控制器件的操作。专用寄存是静态RAM。下面介绍几个重要的专用寄存器
①状态寄存器
状态寄存器包含有ALU(复术逻辑运算单元)的算术状态,复位状态和对数据存储器的块选择,与任何寄存器一样,状态寄存器可以作为任何指令的目的寄存器。如果状态寄存器作为某指令的目的寄存器 ,而那条指令要影响Z、DC,C位的状态,则禁止写这三位。图4-4是 状态寄存器及其状态。
R/W R/W R/W R R R/W R/W R/W
IRP RP1 RP0 TO PD Z DC C bit7 bit0
其中C是进位位,对ADDWF和ADDLW指令,当这一位为1,表示指令 运算的结果的最高有效位产生了进位输出。减法指令执行的是加第二 操作数的新码。对于循环指令(RRF,RLF),这一位即可以来自于源寄存器的高位,也可以来自于低位。如果这一位为0,表明结果的最高有效位没有产生进位输出。对于减法,这一位的极性取反。DC是数字进位或数字借位位。当这一位为1时,结果的D3位向D4位有进位,否则无进位。对于减法,这位的极性取反。Z是结果为0标志。当这一位为1时,表明算术运算和逻辑运算的结果为0,否则这一位为0,表明运算结果不为0。PD:低功耗位。当这一位为1表明电源加上按正常供电或执行了C LRWDT指令以后,这一位为0表示执行了SLEEP指令(即器件进入了低功 耗状态)。TO超时位。当这一位为1时,表明电源加上,进入了正常供电,且执行了CLRWDT和SLEEP指令,这一位为0表明产生了看门狗计时器超时。
RP1:RP0,作为直接寻址的数据存储器的块选择位。
RP1:RP=00状态,选择0块(地址00H~7FH)。
RP1:RP0=01状态,选择1块(地址80H~FFH)。
RP1:RP0=10选择2块(地址100H~17FH)。
RP1:RP0=11选择3块(地址180H~1FFH)。
每块128个字节,PIC16C84只使用RP0位,RP1编程时设置为0。不允许使用RP1为通用读/写位,这可能影响与将来产品的兼容性。IRP寄存器块选择位(作为间接寻址),当这一位设置为0,选择0.1块(地址00H~FFH),当这一位为1时,选择2.3块(地址100H~1FFH)。PIC16C84不使用IRP位,IRP位在编程时为0。状态寄存器中的Z、DC,C位是根据器件的逻辑来置1或清0。而TO,PD位是不可写入的。状态寄存器作为目的寄存器的指令的结果将有不同的内容。例如CLRF STATUS(清0状态寄存器)。结果状态寄存器的内容为000uuluu。其中u表示不改变。只有BCF,BSF,SWAPF和MOVW F这些指令可以用来改变STATUS寄存器的内容,因为这几条指令不影响任何状态位。
②OPTION寄存器
OPTION寄存器是可读,可写的寄存器,它包含了各种控制位以配 置TMRO/WDT的预分频器,外部INT中断,TMRO和在PORTB的微弱上拉。图4-5是OPTION寄存器各位的功能。 R/W R/W R/W R/W R/W R/W R/ W R/W
RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 bit7 bit0
其中PS2,PS1,PS0为预分频器的值的选择。(与PIC16C6X的规定 相同)。PSA位是将预分频器分配给WDT(看门狗计时器,或TMR0)。
TOSE是为TMRO选择跳变信号
INTEDG是为INT中断引脚选择跳变信号。
RBPU用来打开或关闭PORTB内部的上拉电阻。
OPTION的所有位的定义同PIC16C6X系列。
③INTCON寄存器
INTCON是可读可写的寄存器,它包含了各中断源允许或禁止中断 。图4-6是PIC16C84的INTCON寄存器
R/W R/W R/W R/W R/W R/W R/W R/W
GIE EEIE TOIE INTE RBIF TOIF INTIF RB IF bit7 bit0
其中RBIF是RB端口改变中断标志位。此位为1,表明RB<7:4>输入中至少有一位发生了改变,它必须用软件清0这一位。否则为0,即 RB<7:4>输入中没有改变。 ? ? ? ? ? INTIF是外部中断标志位。当这一位为1时,表明有外部中断发生 ,它必须用软件将其清0,否则为0,表明没有外部中断发生。
TOIF是TMRO溢出中断标志。这一位为1,表明TMRO发生了溢出,必须由软件将这一位清0,否则为0,表明TMRO没有溢出发生
RBIE是RB端口改变中断的允许或禁止位,设置此位为1,允许中断,为0禁止。
INTE是INT中断的允许或禁止位。设置为1允许中断方式,为0禁止 。
TOIE为TMRO溢出中断的允许或禁止位。设置为1允许TMRO溢出中断,否则禁止。
EEIE是EE(电可擦除)的写完成中断的允许与禁止位。当设置为1时,允许EE写完成中断,否则禁止。
GIE是所有中断的允许与禁止。设置为1时,允许所有不可屏蔽中断,为0禁止。
四、PCL和PCLATH
程序计数器(PC)是13位。低字节PCL是可读,可写的寄存器。PC的高字节(PCH)不是直接可读,可写的。PCLATH(PC latch high) 是作为PC<12:8>的保持寄存器,这几位的内容被传送到程序计数器 的高位。当程序计数器在执行CALL,GOTO或写PCL等指令时,即向PC装入新的值。PC的高位由PCLATH装入。
具有8个13位宽度的硬件堆栈。堆栈空间它既不是程序存储器的一部分,也不是数据存储器的一个部分,堆栈的指针是不可读/写的。当执行CALL指令或中断被响应时,整个13位的PC被压入堆栈。在执行RETURN,RETLW,RETFIE等指令时,堆栈被弹出。PUSH(压入)和POP(弹出)不影响PCLATH。
堆栈是作为循环缓冲器。当堆栈被压入38次后,第9次压入将占据第一次压入的位置,第十次压入将占据第二次压入的位置,等等。同样当堆栈弹出第9次时,与第一次弹出是一样的。注意,没有状态位来 指明堆栈上溢式下溢的条件。没有PUSH,POP指令助记符,但CALL,R ETURN,RETLW,RETFIE等指令的执行或中断发生,将实际发生压栈退栈。
4-2程序存储器的页
PIC16C84具有1K的程序存储器,CALL,GOTO指令只有11位的地址范围,这11位的地址范围允许分支在2K程序存储器页大小的范围。
为将来PIC16C8X程序存储器的扩展,必须由另外两位来说明程序 存储器的页。这些页位来自于PCLATH<4:3>。当执行CALL、GOTO指令时,用户必须确保这些页位的编程等指向要求的程序存储器的页。
如果执行CALL指令,整个13位被压入堆栈。所以对于返回指令不要求 对PCLATH<4:3>位的管理。因为PC的值将会由退栈而获得。注意:PIC16C84忽略了PCLATH<4:3>位,这些位用于程序存储页1,2,3(0800H-1FFFH),不可以把PIC16C84的PCLATH<4:3>位用作通用读/写位,这会影响将来产品的向上兼容。
4-3间接寻址,INDF和FSR的作用
INDF寄存器不是物理寄存器,只是被用来与FSR寄存器连接以执行间接寻址。
使用INDF寄存器,就可以实现间接寻址。
使用INDF寄存器的任何指令,实际寻址数据是由文件选择寄存器(FSR)所决定的。读INDF自身(FSR=0),将产生00H。向INDF写,结果无操作(显然可以提供状态位)。8位FSR寄存器同状态寄存器STATUS<7>(IRP)组合可以得到9位地址。
然而PIC16C84是不用IRP的。使用下面的例程序,通过间接寻址清零。2OH~2FH单位。
MOVLW 20H ;初始化RAM的指针
MOVF FSR ;到FSR
NEXT CLRF INDF ;通过间接寻址清0,由FSR的内容所指问的寄存器。
INCF FSR ;(FSR)+1→FSR
BIFSS FSR,4;当FSR的第4位为1跳过下一条指令
GOTO NEXT ;否则入。
上一篇:ADC/DAC精度计算器(ACCU)简介
下一篇:PIC单片机之16C84单片机介绍(二)
推荐阅读最新更新时间:2023-10-12 20:43
- 英飞凌推出OptiMOS™ Linear FET 2 MOSFET, 赋能先进的热插拔技术和电池保护功能
- USB Type-C® 和 USB Power Delivery:专为扩展功率范围和电池供电型系统而设计
- ROHM开发出适合高分辨率音源播放的MUS-IC™系列第2代音频DAC芯片
- ADALM2000实验:变压器耦合放大器
- 高信噪比MEMS麦克风驱动人工智能交互
- 在发送信号链设计中使用差分转单端射频放大器的优势
- 安森美CEO亮相慕尼黑Electronica展,推出Treo平台
- 安森美推出业界领先的模拟和混合信号平台
- 贸泽开售用于快速开发精密数据采集系统的 Analog Devices ADAQ7767-1 μModule DAQ解决方案