∑-ΔADC(第二部分):调节器

最新更新时间:2012-11-25来源: 互联网关键字:∑-ΔADC  调节器 手机看文章 扫描二维码
随时随地手机看文章
Σ-Δ转换器使用从调节器得到的许多采样值产生1bit码流。Σ-ΔADC以高采样速率使用输入信号量化器完成这个任务。像所有的量化器一样,Σ-ΔADC调节器获取输入,产生数字码流表征输入电压。可以观察时域或频域的Σ-Δ调节器。如果看时域表现,可以见一阶调节器的结构(图1)。

  

一阶调节器的结构

 

  调节器测量模拟输入信号和反馈DAC的模拟输出。随后一个积分器测量求和节点的模拟电压输出,为1位ADC呈现出一个斜坡信号。1位ADC转换积分器输出信号为数字一或零。使用系统时钟,ADC将1位数字信号送到调节器输出,也通过反馈回输入,在这里1位DAC为等待。

  1位ADC将信号量化为离散的输出编码,带有转换器的量化噪声(ei)。调节器输出等于输入信号加上量化噪声(ei–ei–1)。如这个公式所示,量化噪声为调节器当前误差(ei)减去前一个误差(ei–1)的微分。时域输出信号为以采样频率FS的输入信号脉冲波形。如果将输出脉冲序列平均,它等于输入的信号值。

  频域图反映了不同的问题(图2)。时域输出脉冲在频域内表现为输入信号(或毛刺)和变形的噪声。图2的噪声特性是调节器频率作用的关键。

  

噪声特性是调节器频率作用的关键

 

  不像大多数量化器,Σ-Δ调节器包括形成量化噪声的积分器。调节器输出的噪声频谱并不平滑。更重要的,在频率分析中,可以看到积分器怎样在更高频率处形成噪声,便于产生更高分辨率的结果。

  图2中调节器输出显示了调节器的量化噪声在0Hz时开始为低电平,快速上升,然后在调节器采样频率为最大值处稳定。

  二阶调节器进行两次积分,而不是仅有一次,是最小化低频率量化噪声的一种好方法。大多数Σ-Δ调节器具有更高的阶数。例如,更常用的Σ-Δ转换器的设计包括二、三、四、五或六阶调节器。多阶调节器在更高频率形成更大的量化噪声。

关键字:∑-ΔADC  调节器 编辑:神话 引用地址:∑-ΔADC(第二部分):调节器

上一篇:专用晶圆加工工艺实现高性能模拟IC
下一篇:∑-ΔADC(第一部分):基本拓扑

推荐阅读最新更新时间:2023-10-12 20:44

AD1672单片12位模数转换器的原理及其应用
一、 概述 AD1672是美国adi公司最近推向市场的一种新型单片式模数转换器(ADC)。片上含有4个高性能采样保持放大器(sha)和4个闪烁式adc及电压基准。它采用4级流水线结构,输出带有误差修正逻辑电路,并采用bicmos工艺,从而保证在3msps采样速度下12位精度,在整个工作温度范围内不失码。由于ad1672输入sha具有快速建立特性,所以它既适合从负满度到正满度电压逐次切换多通道系统,又适合输入频率高达奈奎斯特速率的单通道采样。 ad1672具有宽频带输入、单电源供电、低功耗和低价格等特点,非常适用于通信、图象处理和医疗设备新电路设计。 ad1672采用28脚plcc封装,工作温度范围为-40~
[模拟电子]
bascom avr版热电偶TCK+AD8495+ADC测温
rem Main.bas file generated by New Project wizard rem rem Created: 周二 8月 25 2020 TAOTIE rem Processor: ATmega8 rem Compiler: BASCOM-AVR rem Write your code here $RegFile = m8def.dat $Crystal = 8000000 '$Baud = 19200 $HWstack = 40 $SWstack = 8 $FrameSize = 40 Declare Sub Adc_isr() '配置单模式和自动预分频器设置 '单模式必须与G
[单片机]
bascom avr版热电偶TCK+AD8495+<font color='red'>ADC</font>测温
ATtiny13A ADC查询法使用
void adc_init(void) { ADCSRA = 0x00; //禁用ADC ADMUX = 0x03; ACSR = 0x80; //禁用模拟比较器 ADCSRB = 0x00; ADCSRA = 0x83; } uint read_adc(void) { uint temp = 0; ADCSRA |= (1 ADSC); //使能AD转换,第一次转换,结果丢弃 while((ADCSRA & (1 ADIF)) == 0); //等待AD转换结束 ADCSRA |= (1 ADIF); //ADIF写1用来清除ADIF,规格书上要求的 ADCSRA |= (1
[单片机]
芯智汇刘占领:智能语音音箱最佳体验效果需要高性能ADC
近日,在2018松山湖﹒中国IC创新高峰论坛中,来自深圳芯智汇(X-Powers)副总经理刘占领介绍了公司最新推出的高性能智能语音拾取芯片(ADC)AC108。 深圳芯智汇(X-Powers)副总经理刘占领 刘占领表示,智能音箱市场从百家争鸣到巨头争霸,市场热度不断升温,预计今年月出货量将达5KK,这对于IoT市场是一个巨大且极具吸引力的市场。 互联网发展历程的变革体现在交互上也是不断变革的,刘占领提到,最初的PC时代交互是通过眼睛、鼠标与键盘进行,而到了智能手机时代,触摸取代了鼠标和键盘,在第三代IoT时代上,语音交互则成为了最显著爆发点。 对于语音交互的硬件来说,拾音和处理是两大构成,而介于拾音(麦克风)
[模拟电子]
芯智汇刘占领:智能语音音箱最佳体验效果需要高性能<font color='red'>ADC</font>
【联盛德W806上手笔记】十、ADC
Windows 10 20H2 HLK-W806-V1.0-KIT WM_SDK_W806_v0.6.0 摘自《W806 芯片设计指导书 V1.0》、《W806 MCU 芯片规格书 V2.0》 ADC 基于 Sigma-Delta ADC 的采集模块,集成 4 路 16 比特 ADC,完成最多 4 路模拟信号的采集,或两路差分信号采集,采样率通过外部输入时钟控制,最高采样率 1KHz,可采集输入电压,也可采集芯片温度,支持输入校准和温度补偿校准。 ADC 电路设计 芯片 19 ~ 21 脚可以作为普通 ADC 使用,输入电压范围 0~2.4V。当高于 2.4V 时外部需做分压处理后才可进入 ADC 接口。为提高精度,R
[单片机]
【联盛德W806上手笔记】十、<font color='red'>ADC</font>
高精度模数转换器AD7671的原理及应用
   概述   AD7671是采样速率达1MSPS的16位逐次逼近型高速高精度数模转换器,采用5V单电源供电,并能提供单极性和双极性两种输入方式,可适用各种不同的输入范围。它还提供校准与误差校正电路、内部时钟、8位或16位并行口和一个串行口。AD7671能够达到16位分辨率,而且无失码,最大积分非线性误差(INL)仅为±2.5LSB,能够满足各种高精度应用的要求。   AD7671能够工作在三种不同的方式下,以提供不同的采样速率。包括采样速率达1MSPS 的“Warp”工作方式(两次转换之间的时间不能超过1ms),适合于要求高速采样的应用场合;最高采样速率为800KSPS的“Normal”工作方式(对两次转换之间的时间
[模拟电子]
∑-△ADC原理及应用
一、∑-△ADC工作原理   要理解 ∑-△ADC 的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。   1.过采样   首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist定理,采样频率至少两倍于输入信号。从   FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs/2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,
[模拟电子]
∑-△<font color='red'>ADC</font>原理及应用
如何实现STM32F407单片机的ADC转换
用到的引脚是PA3也就是ADC1的通道3 1、ADC的主要参数 a、分辨率----stm32f407的分辨率有6位、8位、10位、12位,参考电压如果是3.3 那么最小分辨率就是3.3/4095。 b、转换时间----stm32f407的最高允许频率是36M,最快转换时间 = 3+12个周期 =0.71us。 c、参考电压----2.4至3.3v。 2、工作过程分析 ADC转换是把外面输入到引脚的电压值转换成数字信号,单片机里面有一个模拟至数字的转换模块,我们可以控制它采集引脚的电压,stm32F407可以利用void ADC_SoftwareStartConv(ADC_TypeDef* ADCx)这个函数来控制转换。 3、详细的
[单片机]
如何实现STM32F407单片机的<font color='red'>ADC</font>转换
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved