电机控制用小功率稳压电源的设计

最新更新时间:2012-12-16来源: 互联网关键字:电机控制  小功率  稳压电源 手机看文章 扫描二维码
随时随地手机看文章

引言

  永磁无刷直流电机是目前具有新原理、新工艺、新方法的新型电机,它是由永磁无刷直流电机本体(BLDCM)、转子位置传感器(RPS)和控制器(CU)三部分组成的机电一体化系统。该电机克服了有刷电机的诸多弊端,因此,近年来发展很快,已应用在很多领域。

  控制用电源主要是给控制器的各种芯片提供电能,一般采用将系统外部输入电压经过高频DC/DC隔离式开关电源变换成多路电压输出后给控制器芯片供电。控制用电源功率较小,但要求简单可靠、稳定性好。传统的开关电源采用分立元器件,存在电路复杂、效率低、可靠性差等缺点。美国PI(Power Integration)公司推出的TOPSwitch-Ⅱ系列开关电源专用集成芯片能很好地解决这些问题,它的上作频率为100kHz,外围电路简单、电磁干扰小、成本低廉,能有效地减小控制器的体积和重量,并增强系统工作的可靠性。因而本设计选用其中的TOP224Y芯片构成单端反激式开关电源作为控制器电源。

  l 单端反激式变换器基本工作原理

  单端反激式变换器又称电感储能式变换器,其变压器兼有储能、隔离双重作川。图l为其电路原理图。所谓单端,指变压器磁芯仅工作在其磁滞回线的一侧。当高压开关管S1导通时,直流输入电压V1加在原边绕组Lp两端,在变压器原边电感线圈中储存能量,由于副边绕组相位为上负下正,使二极管D反偏而截止,副边回路无电流流过,此时电源能量转化为磁能存储在电感中。当S1截止时,原边电压极性反向,使副边电压极性反转过来,从而二极管D导通,储存在变压器中的能量传递给负载,同时给输出电容C充电,此时磁能转化为电能释放出来。当开关管重新导通时,负载电流由电容C来提供,同时变压器原边重新储能,如此反复。从以上电路分析可以看出,S1导通时,副边回路无电流;S1截止时,副边回路有电流,这就是称之为“反激”的含义。

 

  2 电路原理与设计

  2.l TOP224Y的主要特性

  TOP224Y是TOPSwitch-Ⅱ系列集成芯片中的一种,是典型的三端器件,三个管脚分别为控制极C源极S和漏极D,其内部MOSFET耐压值高达700V。它具有宽电压输入范围(交流输入电压可达85~265V),AC/DC变换效率可达90%。它将功率开关管与其控制电路集成于一个芯片内,并具有自动复位、过热保护和过流保护等功能。由于它有很高的集成度和完善的保护电路,因而用它构成的开关电源外围元器件数目少、电源体积小、可靠性高,这些特点非常适合于用来设计小功率辅助电源。

  图2是其内部结构框图。当系统上电时,漏极D变为高电位,内部电流源开始向C端供电且片内开关在O位,给并接在C、S极的外接电容(如图3中的C2)充电,当充电到5.7V时,自动重启动电路关闭,片内开关跳到l位。TOPSwitch进入正常工作状态,输出PWM波驱动内部MOS管工作。此后,Ic改由反馈电路提供。控制端电压Uc经过Zc、P沟道场效应管和电阻RE分压后,获得反馈电压Uf加至误差放大器的反相输入端。误差放大器将Uf与5.7V基准电压进行比较之后,输出误差电流If,当If流过电阻RE时,就在其上形成误差电压,以此和锯齿波电压进行比较,调节脉冲占空比。由以上分析可看出,TOPSwitch-Ⅱ属电流控制型开关电源,由控制端电压Uc提供偏压,控制端电流Ic调节占空比。

 

 


  2.2 主电路工作原理

  图3所示为本文设计的基于TOP224Y的反激式控制器辅助电源电路图。输入电压为直流160~220V,输出为一路+5V电压和两路瓦相隔离的+15 V电压,设计功率为5W。

 

电路中D1为TVS(瞬态电压抑制器),D2为超快恢复二极管,D1和D2组成箝位保护电路,用于对高频变压器由于漏感而产生的尖峰电压进行箝位和吸收,从而保护功率MOSFET。副边电压经D3、C3整流滤波后输出+15V电压给脉宽调制芯片供电并经线性稳压芯片LM7805降压后输出+5 V电压,给逻辑合成芯片供电,采用LM7805不但省去了多绕一个+5V输出的副边绕组,而且输出电压性能稳定,纹波更小。

  由于对输出电压的精度要求小是很高,故反馈电路采用配稳压管的光耦反馈电路。电路利用输出电压的变化引起光耦中LED的电流If的变化来控制TOP224Y的控制极电流Ic,从而调节占空比D,改变PWM宽度,达到稳定输出电压的目的。比如,由于某种原冈U0↑,则光耦LED的电流If↑,经光耦传输后,接收管电流Ice↑,故TOP224Y的Ic↑,而Ic与占空比D成反比关系,故D↓,导致U0↓,实现了稳压;反之,U0↓→If↓→ICE↓→Ic↓→D↑→U0↑,同样达到了稳压的作用。

  反馈绕组的输出电压经D4、C4整流滤波后,给光耦的接收端提供偏置电压,同时作为另一路+15V电压输出给专用驱动芯片供电,电路中C2是旁路电容,其作用有三个:滤除控制端上的尖峰电压;决定自动重启动频率;与R1构成控制环路的补偿电路。


  2.3 高频变压器的设计

  由于外围元器件少,所以设计的关键是变压器。单端反激式变压器工作在磁滞回线的第一象限,磁芯同时加有交流和直流,变压器磁芯磁感应强度变化量△B变化很小,为了防止磁芯饱和,一般采用加气隙的方法,这就增加了变压器设计的难度。下面给出设计中变压器参数的计算方法。

  本设计反激式变换器采用不连续导通工作方式(DCM),取最大占空Dmax=0.4,变压器选用锰锌铁氧体R2KB磁芯,其导磁率高达2000μi,饱和磁密BS值为480mT(25℃时),经计算选用E1-22磁芯,其有效截面积为42m㎡,取△B=O.15T。

  2.3.1 计算原边最大电流Ip

 

  式中:Po为输出功率;

  η为变换器效率;

  Vin(min)为输入最小直流电压;

  Dmax为最大占空比。

  2.3.2  计算原边电感量Lp

 

  式中:ton为开关管导通时间,ton=DT。

  TOP224Y的工作频率为100kHz,所以T=1/f=10μs。

  2.3.3计算气隙长度lg

 

  式中:Ac为磁芯的有效截面积(mm2);

  Bm为最大磁感应强度(T)。

2.3.4  计算原、副边及反馈绕组匝数

 

  反馈绕组匝数:NF=NS=16

  以上绕组匝数均为取整后的数值。

  2.3.5  验算磁芯的△B

 

  故前面选择的磁芯是合适的。

  2.3.6 导线的选择和变压器绕制

  本设计由于原、副边电流均很小且考虑绕制方便,通过计算选用φO.3lmm漆包线绕制变压器。为了减少漏感,变压器绕组应同轴分布,绕线采用夹层(三明治)绕法,即:一半原边绕组52匝(里层)+次级绕组16匝+另一半原边绕组53匝+反馈绕组16匝(外层)。各层间夹绝缘胶带,绕完后最外面再用绝缘胶带包扎,用环氧树脂胶将磁芯和骨架粘接牢靠。

  2.4 反馈回路参数确定

  为了实现线性调节占空比,控制脚电流IC应在2~6mA之间,而IC是受光耦发光管电流If控制的,由于PC817是线性光耦,二极管正向电流If在3mA左右时,三极管的集射电流Ice在4mA左右,而且集射电压在很宽的范围内线性变化。因此一般取PC817发光管正向电流If为3mA。

  本设计反馈电路中D8采用击穿电压为13V的稳压管IN4743。由于光耦PC817中LED的正向压降为Uf≈1.2V,所以

 

  IN4743稳定电流IZ的典型值为20mA,R2支路只能供给大约3mA电流,为此,利用电阻R3提供另一路约17mA的电流,同时作为一部分假负载用于改善轻负载时的稳压性能。所以可求得R3阻值为

 

  3 实验结果及分析

  根据以上分析和计算,进行了样机的制作和试验,图4、图5分别为输入电压为160V时+5V和+15 V的输出电压波形,纹波电压小于3%。图6、图7分别给出输入电压在160V和89.5V情况下,输出功率4.5W时TOP224Y漏极电压Ud波形,可以看出,在输入电压大范围变化时,系统跨越断续模式和连续模式两种工作状态,并且测量输出电压稳定。实验结果表明,该电源工作在满载状态时,效率达81%,电压调整率、负载调整率和纹波满足控制电路对电源电压的要求,系统工作稳定。

 

  4 结语

  无刷直流电机是机电一体化产品,其中控制器是该电机能否正常工作之关键,它决定着电机的电子换向规律、正/反转可逆运行和功率能流的有效调控,因此,控制器用稳压电源的设计也显得尤为重要。本文采用TOPSwitch集成芯片所研制的小功率辅助电源经测试表明,其性能稳定、可靠性高且具有较强的抗干扰能力。

关键字:电机控制  小功率  稳压电源 编辑:神话 引用地址:电机控制用小功率稳压电源的设计

上一篇:一种全集成型CMOS LDO的设计
下一篇:汽车环境中要求高性能电源转换的设计

推荐阅读最新更新时间:2023-10-13 10:57

高频开关稳压电源的基本构成
  高频开关稳压电源采用功率半导体器件作为开关器件,并通过开关器件的周期性间断工作来控制其占空比,从而调整输出电压。高频开关稳压电源的基本构成如图1所示,图中的DC/DC变换器是高频开关稳压电源的核心部分(其作用是进行功率转换),此外还有启动、过流与过压保护、噪声滤波等电路。输出采样电路(R2、R2)主要用来检测输出电压的变化,并将其与基准电压Ur进行比较,比较后获得的误差电压经过放大及脉宽调制(PWM)电路处理后,输出至驱动电路(其作用是控制功率器件的占空比),从而达到调整输出电压大小的目的。图2是一种高频开关稳压电源的原理电路。   图1 高频开关稳压电源的基本构成   图2 高频开关稳压电源的原理电路   高频
[电源管理]
高频开关<font color='red'>稳压电源</font>的基本构成
采用运放构成的跟踪稳压电源电路
采用运放构成的跟踪稳压电源电路
[电源管理]
采用运放构成的跟踪<font color='red'>稳压电源</font>电路
基于TMS320F2812 DSP的交流永磁同步直线电机控制系统的设计
制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高速度场合,这种驱动已经显露出不足。在这种情况下直线电机应运而生。直线电机直接产生直线运动,没有中间转换环节,动力是在气隙磁场中直接产生的,可获得比传统驱动机构高几倍的定位精度和快速响应速度。 本文是在我系研制的交流永磁同步直线电机基础上进行基于矢量变换控制的驱动系统设计应用。 2. 交流永磁同步直线电机工作原理   直线电机的工作原理上相当于沿径向展开后的旋转电机。交流永磁同步直线电机通入三相交流电流后,会在气隙中产生磁场,若不考虑端部效应,磁场在直线方向呈正弦分布。行波磁场与次级相互作用产生电磁推力,使初级和次级产生
[工业控制]
基于TMS320F2812 DSP的交流永磁同步直线<font color='red'>电机控制</font>系统的设计
ARM LPC2101的无刷直流电机控制方案
  LPC2101是基于16/32位 ARM7CPU嵌入高速Flash闪存的微控制器,具备高性能,小体积封装,低功耗,片上可选择多种外设等优点,应用范围很广。其具备的多种32位和16位定时器、10位A/D转换器和每个定时器上PWM匹配输出特性,尤其适用于工业控制。   无刷直流电机是一种易驱动电机,适用于变速和启动转矩很高的应用,它的使用范围从大规模的工业模具到调光控制的小型电机(12V直流电机),外形和尺寸也是各种各样。    1 无刷直流电机的基本原理   无刷直流电机一般由定子、转子和金属壳体等组成,如图1所示,通过反向极性的吸引产生扭矩使电机运转。一旦转子开始运转,固定的刷子和转子部分将不断反复地连接、断
[工业控制]
ARM LPC2101的无刷直流<font color='red'>电机控制</font>方案
msp430无刷电机控制设计电路
  msp43概述   MSP430是德州公司新开发的一类具有16位总线的带HLASH的单片机,由于其性价比和集成度高,受到广大技术开发人员的青睐它采用16位的总线,外设和内存统一编址,寻址范围可达64K,还可以外扩展存储器。具有统一的中断管理,具有丰富的片上外围模块,片内有精密硬件乘法器、两个16位定时器、一个14路的12位的模数转换器、一个看门狗、6路P口、两路USART通信端口、一个比较器、一个DCO内部振荡器和两个外部时钟,支持8M的时钟。由于为HLASH型,则可以在线对单片机进行调试和下载,且JTAG口直接和FET(FLASHEMULATIONTOOL)的相连,不须另外的仿真工具,方便实用,而且,可以在超低功耗模式下工作
[单片机]
msp430无刷<font color='red'>电机控制</font>设计电路
带保护功能的5V稳压电源
    具有过压保护的5V稳压电路,采用集电极输出串联型稳压方式,具有:成本低、效率高、体积小、重量轻、纹波少和稳定度高等特点。具有扩流和过压保护装置,可实验室作电路实验,也可作固态电路和微处理机的供电电源,还可用作专用仪器、仪表等其他电路的电源。     1.电路工作原理     电路如下图所示。闭合电源开关s,电网220V电压经变压器降压得到11.5v交流电,二级管VD1~VD4桥式整流,电容C4滤波,集成稳压器W7805的稳压可获得平滑的5V直流电压。集成稳压器W7805的最大输出电流为1.5A,图中的大功率三极管VT起扩流作用,可使输出电流大于1.5A。 这是一种并接式扩流方式,即W7805的①脚与VT的基极相连,W780
[电源管理]
带保护功能的5V<font color='red'>稳压电源</font>
基于单片机C8051F020 的数字多电机控制平台的设计
0 引言 步进电动机因具有转子惯量低、定位精度高、无累积误差等特点,非常适合用于开环位置控制系统中。直流电机是伺服控制中常用的电机。然而在实际系统中为满足不同的功能往往同时存在多个运动部件,常用的方法是一个独立的功能对应一个控制系统,这样虽然模块性很好,但是占用了大量的系统资源和空间,也在一定程度上降低了系统的可靠性。 如在某系统中存在4 个运动部件,分别为两台三相反应式步进电动机,一台直流电机和一台四相步进电动机的控制。本着提高系统集成度的想法,本文只用一个控制芯片C8051F020 就完成了以上4 台电机的驱动控制,电路简单,可靠性高。 1 总体设计 基于Cygnal 公司的MCU 控制芯片C8051F
[单片机]
基于单片机C8051F020 的数字多<font color='red'>电机控制</font>平台的设计
foc电机控制算法的调试经验总结
本文分享foc电机控制算法的调试经验,针对的场景是往一套新的控制板卡上移植一套电机控制软件。 具体调试过程是 发波= 电流反馈= 环路= 角度 将调试过程分解为以下步骤。 确认pwm模块正常 确认svpwm发波正常 确认电流反馈正常 引入电机角度 评估角度精度 下文中对移植调试的步骤分解,并给出每一个调试步骤的软件框图。 1、确认pwm模块正常 1.1、确认母线电压和实际测试值一致。 1.2、三相输出悬空,三相输出寄存器分别给固定占空比,测量各相对的波形,看是否和给定占空比一致。 2、确认svpwm发波正常 2.1、连接电机或其他三相对称负载。 2.2、参考以下框图,选取较低频率,生成固定转速强制角。给电压
[嵌入式]
foc<font color='red'>电机控制</font>算法的调试经验总结
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved