推荐阅读最新更新时间:2023-10-12 20:44
基于Atmega8的数字功放设计
1 引言
数字功放由于其效率高、易与数字音源对接等优点而在现实生活中具有越来越广泛的应用。它主要包含两部分,图1为数字功放的基本框图。其中PWM变换大致有两种,一是模拟PWM,即将输入的模拟信号或数字信号经D/A后与三角波进行比较,这种变换必须要有频率上百kHz、线性度好、满幅的三角波,而且还要有高速模拟比较器,否则将影响PWM波形在解调后的波形,这些都将增加成本和设计复杂度(使用集成D类功放或D类控制芯片另当别论)。二是数字式PWM,即将输入数字信号或模拟信号经A/D后与计数器相比较,即用计数的方法代替三角波,从而避免了三角波非线性所引起的失真。同传统的模拟方式相比,数字方式具有设计简单,效率更高,抗干扰性更强等优点。而A
[单片机]
带音调控制的混合式Hi-Fi功放电路
现代电子技术应用中电子管的使用虽然已经较少,但由于电子管有晶体管不可替代的一些优越特性,所以在部分领域特别是音响电路中还受到人们的亲睐。这是一款由“靓”音电子管和音响集成电路联合组成的混合放大器。该放大器由电子管作前级,音响专用集成电路AD711 和LM1875 作后级,电路失真小、输出阻抗低、动态范围大,能保证良好的音质。因与集成电路结合,电路简单。
一、电路工作原理
电路原理如图1 所示。
此电路只画出左声道部分,右声道略。电路选用双三极6N2 型电子管构成线路输入放大器(6N2 的一半VE1L 用于左一声道,另半VE1R 用于右声道)。R2 为输入级的直流偏置电阻,屏流Iao 流经R2 时,产生约1
[模拟电子]
功放电路PCB布线的问题及防治措施
有源音箱就是音箱与放大器的组合,因此有源音箱噪音分析与一般放大器噪音与放大器近似,分析、处理时可借鉴HIFI放大器。 噪音与放大器相生相伴,是无可避免的,这里讨论降低噪音,目的是将其降低至可接受的范围,而不是、也无法将其彻底根除,换句话说,信噪比只能尽量提高,但不能无限大。下面我们就先来从噪音产生根源与机理方面简要分析,然后再来了解一些经实践检验行之有效的防治措施。 一、电磁干扰及防治措施 1. 电磁干扰 电磁干扰主要来源是电源变压器和空间杂散电磁波。 有源音箱除极少数特殊产品外,多数是由市电提供电源,因此必然要使用电源变压器。电源变压器工作过程是一个“电-磁-电”的转换过程,在电磁转换过程中必然会产生磁泄露,变压器泄磁被放大电路
[电源管理]
基于DDX技术的全数字功放解决方案
前言
随着数字音源与数字音频技术的迅速发展,直接对数字音频信号进行功率放大而不需要进行模拟转换(DAC)的数字音频放大器得到了迅速发展,它具有效率很高并且能与数字音源直接对接,实现端到端的纯数字音频处理和放大等优点。这种DDX音频放大器可以接受来自DSP直接输入的数字音频编码信号,采用专利的DDX信号处理技术来控制高效的功率器件,不需要为每个声道准备D/A转换器,从而减少了中间不必要的转换层级,音质得到显著的改善,成本也随着零部件数目的减少而下降,从而把高音质、低功耗和低制造成本带到人气很旺的高速增长的应用领域,如平板电视机、无线产品和个人音响系统。
DDX音频放大器包括2个主要部分:第一部分是采用专利DDX技术的调制
[嵌入式]
工程师参考手册(四):D类功放设计须知
四、新型绿色能效D类音频放大器设计应用
引 言
多媒体时代,传统A类、B类、AB类线性模拟音频放大器因效率低,能耗大,已不能满足电子视听类LCD/PDP/OLED/LCOS/PDA等绿色节能、高效、体积小等新发展趋势,而非线性音频放大器件Class-D类功放因具备节能、高效率、高输出功率、低温升效应、占用空间小等优点,将被纳入越来越多新产品设计中。D类放大器架构上分半桥非对称型和全桥对称型,而全桥类相对半桥型具有高达4倍的输出功率,更为高效;从信号适应上分模拟型和I2S全数字型,因全数字型尚处发展阶段,成本高,而模拟型因成本优势将在未来几年处于应用主流。本文重点剖析了全桥模拟型D类功放设计要素,实现了一种基于N
[模拟电子]
启攀微电子推出支持自动增益控制的D类音频功放
启攀微电子(Chiphomer Technology Ltd)近期推出3W支持自动增益控制的单声道的D类音频功放CP2217。其主要特性如下:
* 先进的自动增益控制设计,最大限度的避免了破音的产生 * 四种工作模式 * 高达88%效率 * 输出功率 @5.0V,1%THD,8 Ω 1.36 W(typ) @5.0V,10%THD,4 Ω 3 W(typ) * 低静态工作电流 2.8mA (typ) * 低功耗关断模式 0.1μA (typ) * 高PSRR -65dB (typ) * 工作电压范围
[模拟电子]
组图]LM1875功放电路
LM1875功率较TDA2030及TDA2009都为大,电压范围为16~60V。不失真功率为20W(THD=0.08%),THD=1%时,功率可达40W(人耳对THD 10%一下的失真没什么明显的感觉),保护功能完善。笔者是一个不错的选择。
其接法同TDA2030相似,也有单双电源两种接法。
1.单电源接法图:
2.双电源的接法如图:
[模拟电子]
可用于音频功放的过温保护电路设计
在集成电路芯片工作的过程中,不可避免地会有功率损耗,而这些功率损耗中的绝大部分将转换成热能散出。在环境过高、短路等异常情况下,会导致芯片内部的热量不能被及时散出,从而不可避免地使芯片工作温度上升。过高的工作温度对芯片工作性能、可靠性和安全性都有很大的影响。研究表明,芯片温度每升高1℃,MOS管的驱动能力将下降约为4%,连线延迟增加5%,集成电路失效率增加一倍,因此芯片内部必须要有过温保护电路来保障芯片安全。
文中将介绍一种可用标准CMOS工艺实现的过温保护电路。在电路设计上,使用了与温度成正比的电流源(PTAT电流)和具有负温度系数的PNP管(CMOS工艺中寄生)结电压作为两路差动的感温单元。这种差动的传感方式,可以
[家用电子]