电流源设计小Tips(三):确认电流源电路图

最新更新时间:2013-04-26来源: 互联网关键字:电流源设计  电流源  电路图 手机看文章 扫描二维码
随时随地手机看文章
对于工程师来说,电流源是个不可或缺的仪器,也有很多人想做一个合用的电流源,而应用开源套件,就只是用一整套的PCB,元件,程序等成套产品,参与者只需要将套件的东西焊接好,调试一下就可以了,这里面的技术含量能有多高,而我们能从中学到的技术又能有多少呢?本文只是从讲述原理出发,指导大家做个人人能掌控的电流源。本文主要就是设计到模拟部分的内容,而基本不涉及单片机,希望朋友能够从中学到点知识。上次讲到《电流源设计小Tips(二):如何解决运放振荡问题》,今天接下来看其它部分的学习。

  思路大致如此:

  1. 选用功率MOSFET的原因基于两点考虑。

  首先功率MOSFET并非很慢,而稳恒源不要求很快。

  其次是成本和功率容量,使用功率MOSFET首要的是安全工作区,电源使用中要应对用户各种各样的操作,很多是违反规程的,但用户只能教育不能要求,因此安全工作区会选得余量很大。事实上,就价格、性能和此电流源可能产生的最大功率而言,几乎没有比520/530更合适的MOSFET可选。

  对于稳恒应用,此电流源架构并无致命问题,是个典型的方法。

  频率补偿在所有线性电源里都在所难免,研发过程中对补偿花费的时间也基本相当,只是经验上有所差别。

  补偿很简单,理论一讲起来就长篇累椟。之所以花了大功夫,就是要大家了解振荡是可分析和可控的,遇到振荡不必手足无措。

  2. 1M带宽内的振荡对于负载有时比高频振荡更可怕,对于线性电源而言,1M正好处于系统的处理频段内(再高也振不动),因此振荡幅度可能极为可观,这一点【47楼】 yan_jian应该体会很深。曾经被10k的振荡电过,36Vpp而已,和220V的感觉差不多。

  至于叠加处理,只要不是直流,拉普拉斯变换应该问题不大。

  pH确实是在任何情况下都有潜在振荡的危险,但为区分po和pH的区别,讲述顺序上po由于很容易发现而在前,此时pH是次要矛盾,为突出重点可先不考虑。实际的电路中,Cgs可能达到10000pF(30N50),po就不是800k了,很可能在gm很小的时候就有作用。

  况且po和pH的处理上差别很大,一种补偿很难同时处理好,要用到不同的补偿方法,一起考虑会比较乱。

  毕竟不是理论课,基本上是个调试过程的再现,分析过程更针对动手。

  超beta管在10几年前的双极运放中很常见,通常beta》3000。如果beta=1200,普通的达林顿结构就可达到。自然这是纯双极平面工艺的处理方法,因此CMOS里肯定没有,BiCMOS里由于MOS的特性应该用不到。

  晶体管级别的分析放下很久了,很多参数都记不住了,再拿起来真的很头疼,如有错误,请大家指正。

  呵呵,看到大补就想起发烧,手上还有一大盒用不出去的补品。

  只用了2毛钱,7个普通元件。

  商用线性电源里用得更多,Agilent 364x里的补偿元件一眼看去不完全统计不下20个,我的产品你见过的大板上也有十几个,在学校的时候扒过固纬的电源,仅运放输出端与MOSFET栅极之间就有十几个。pL之前的斜率为0,经过pL后斜率为-20dB/DEC(-6dB/倍频程),经过po后斜率为-40dB/DEC(-12dB/倍频程)经过pH后斜率为-60dB/DEC(-18dB/倍频程)。

  极点使之后的幅度频响曲线斜率降低20dB/DEC。

  零点使之后的幅度频响曲线斜率增高20dB/DEC。

  晕,赶紧又查了遍书,应该不会错吧,呵呵。

  

  

  PS:pL/pH相差6个DEC,极点前2个DEC相位开始偏转,到达极点时为-45,再过2个DEC就到-90了。补偿之前,po处的相位正好是-135,之后超过-135,使相位裕量小于45,系统振荡。符合稳定性判据。

经过这么长时间的煎熬,终于见到完整的电路。

  

  图中增加了运放双电源退耦电容,主电源退耦电容和输出续流二极管。

  本次增加成本:

  0.1uF/50V电容 3只 单价0.03元,合计0.09元

  10uF/25V电容 2只 单价0.05元,合计0.10元

  100uF/25V电容 1只 单价0.20元,合计0.20元

  1N4007二极管 1只 单价0.07元,合计0.07元

  合计:0.46元

  合计成本: 15.04元

  电流源的电源

  **********************************************************************************************************************

  这个勿需多言。但考虑中国电网质量,请尽量选择正规厂家的E型变压器。基于同样的原因,建议使用电源滤波器。

  保险和开关按需使用。

  

  真的完成了么?

  ***********************************************************************************************************************

  还差得远,这只是一个原理图。

  在原理图中,至少有几个经验 值得记住,对于我来说是很多年的摸索和很多银子的教训。

  1. 模拟放大器的设计中,原理图阶段要注意频率补偿的必要性。

  任何放大器都需要补偿,由于不会总有合适的Aopen,因此总会有修修改改。

  基本运放电路里似乎从不考虑这个问题,但这只是最近20年的事,20年前即使基本运放电路也要补偿。

  知识封装得越严重,越应了解原理。中国缺乏电子科技文化,都被封装的知识替代了。

  2. 既然如此,原理图阶段就应预测所有可能的补偿方法及其位置,并保留补偿元件位置。

  这是几千块钱带来的经验,说教训也行。

  3. 所有的元件及其取值都必须有根据,即都是算出来的。

  这一点在之前17节中反复强调。图中所有元件都是按要求选择或计算得到。

  下一次再对人家说,我用的OP07,我用的LT1028,一定要记得说出选择的依据。

  国内的模拟电路设计出来,很多元件的取值都是经验,缺乏根据。一旦电路并不如设计者所愿工作时,便无从下手。因此再看到Agilent电路里那些奇怪的电阻电容(直流分析里似乎多余),千万不要忽略,尽量把它算出来,会有巨大成长。必须记住,仅能分析直流是否负反馈对于模拟电路是远远不够的。

  这些的确很难马上做到,良心话,几千块钱和几年时间是必须的。但如果之前就有这根弦,会少走点弯路。

  浅以为,就这三点,应可达到这次特殊开源的目的。

  原理图下面似乎就是PCB了?

  不,还早。

  PCB只是一个结果,电磁/热耦合管理的结论。

关键字:电流源设计  电流源  电路图 编辑:神话 引用地址:电流源设计小Tips(三):确认电流源电路图

上一篇:如何提高智能电网端点安全性
下一篇:基于PC104的航空发动机试车参数检测系统研究

推荐阅读最新更新时间:2023-10-12 20:45

测试手机充电器变压器电路图
  测试手机充电器的方法非常简单,就是把充电器上的变压器拆掉,然后把待侧变压器接上去,测量充电器的输出电压是否合格,一般是4.5,4.6或者5.0,5.1测试的方法有俩大问题,一是经常烧坏充电器的其他元件,二是正次品区别不大,有的相差就0.1负。最容易坏的就是4148,小3极管,还有稳压管。如果本身是可以直接接交流电的变压器,那就直接把变压器接到交流电上,然后测变压器次级的交流电压就好了。为了安全,可以使用1:1的隔离变压器来隔离市电。这个做法的特点是,直接测量变压器,不会因为变压器不合格而损坏充电器的其他元件。    电路原理: 该充电器电路主要由振荡电路,充电电路,稳压保护电路等组成,其输入电压AC220V,50/60Hz,
[电源管理]
测试手机充电器变压器<font color='red'>电路图</font>
随机音乐发生器电路图
本电路用约翰逊计数器作为特殊的移位寄存器,它有12个输出端。在1至10HZ的时钟控制下,输出状态的变化几乎是随机的。根据选择开关的具体接法,输出状态总数可为18到3255个。图10.9.1右上方的振荡器是用NE555接成压控方波发
[模拟电子]
随机音乐发生器<font color='red'>电路图</font>
浅谈电气控制电路图的识图技巧
怎样看电气控制电路图?怎样识读电气控制电路图?电气控制电路图怎么看?对于电工电气初学者来说,如何看懂电路图,今天大概学习网小编在这里提供一些方法供大家参考。 怎样看电气控制电路图?怎样识读电气控制电路图?电气控制电路图怎么看? 对于电工电气初学者来说,如何看懂电路图,今天大概学习网小编在这里提供一些方法供大家参考。看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。 1.看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 第二步:要弄清楚用电设备是用什么电器元件
[工业控制]
降低动态噪声的电路图
降低动态噪声的电路图
[模拟电子]
降低动态噪声的<font color='red'>电路图</font>
±5A、2.5V (两象限) μModule 稳压器电路图
  下图为±5A、2.5V (两象限) μModule 稳压器电路图   LTM8052 是一款 36VIN、5A、两象限恒定电压、恒定电流 (CVCC) 降压型 μModule® 稳压器。封装中内置了开关控制器、电源开关、电感器和支持组件。LTM8052 可在一个 6V 至 36V 的输入电压范围内运作,支持 1.2V 至 24V 的输出电压范围。LTM8052 能吸收或供应电流,以在高达正和负电流限值的条件下保持电压调节作用。 图 ±5A、2.5V (两象限) μModule 稳压器电路图
[电源管理]
±5A、2.5V (两象限) μModule 稳压器<font color='red'>电路图</font>
如何选择外部电阻减少接地负载电流源误差
运算放大器通常用于在工业流程控制、科学仪器和医疗设备等各种应用中产生高性能电流源。《模拟对话》1967年第1卷第1期上发表的“单放大器电流源”介绍了几种电流源电路,它们可以提供通过浮动负载或接地负载的恒流。在压力变送器和气体探测器等工业应用中,这些电路广泛应用于提供4 mA至20 mA或0 mA至20 mA的电流。   图1所示的改进型Howland电流源非常受欢迎,因为它可以驱动接地负载。允许相对较高电流的晶体管可以用MOSFET取代,以便达到更高的电流。对于低成本、低电流应用,可以去除晶体管,如《模拟对话》2009年第43卷第3期“精密电流源的心脏:差动放大器”所述。 这种电流源的精度取决于放大器和电阻。本文介绍如何选
[电源管理]
如何选择外部电阻减少接地负载<font color='red'>电流源</font>误差
基于台式机银盒电源的同步降压设计电路图
描述   PMP3199 是用于银盒电源的双输出同步降压设计。银盒电源用在台式机中。其输入电压为 12V。采用 TPS5124 产生 5V (20A) 和 3.3V (25A) 输出。该设计具有出色的效率(高达 92%)。   原理图/方框图
[电源管理]
基于台式机银盒电源的同步降压<font color='red'>设计</font><font color='red'>电路图</font>
FSK解调电路图
数字调频和调相信号的调制与解调 1. 数字信号调频与调相最常见的数字调频与调相信号是,二元数据信号的移频键控信号FSK,以及移相键控信号PSK。 2.数字调频信号的产生从原理上讲,方波调频与前面讲过的模拟信号调频没有什么本质的不同。这里着重介绍一些适用的实际电路。 FSK信号和PSK信号 解调器用PLL解调FSK信号有两种不同的方法。第一种是用一个PLL使其始终对输入信号的频率锁定或跟踪。第二种方法是用一个PLL对FSK信号中的一个频率锁定,而对另一个频率则是失锁的。
[模拟电子]
FSK解调<font color='red'>电路图</font>
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved