基于FPGA的汽车ECU设计充分符合AUTOSAR和ISO 26262标准(四)

最新更新时间:2013-10-07来源: 互联网关键字:FPGA  ECU设计  AUTOSAR  ISO 手机看文章 扫描二维码
随时随地手机看文章

 用户可以将在 MCU 和 BSW 层中综合的外设和硬件协处理器设置成高智能化水平,以释放 CPU 时间,从而简化车载 ECU 的软件。

  随着 ECU 平台日趋复杂化,系统所需的 I/O 线路数也在不断增加。在这方面 FPGA 较微控制器有明显的优势,因为 FPGA一般能够提供多得多的用户引脚数。这一点一般与基于 MCU 的 ECU 有关,因为这种 ECU 需要采用执行并-串数据转换的外部芯片(比如数字移位寄存器或模拟多路复用器)来扩展 ECU 的输入和输出。采用 FPGA 可以绕开这些外部组件,进而缩减材料清单成本以及电子开发板的 PCB尺寸。

  先进的 FPGA 器件已经集成有模数转换器。这个特性对汽车设计意义重大,因为许多 ECU使用模拟信号(比如电池电压)来实现所需的部分功能。在可编程逻辑器件中集成模数转换器为 FPGA 开辟了新的应用领域。

  与 MCU 类似,FPGA 也提供远程更新功能。但在这里需要提醒的是,下载到 FPGA 中的位流不仅涉及到软件代码,而且与硬件电路也息息相关。这意味着就算产品已经进入量产阶段,仍然可以通过系统更新或升级来修改硬件设计。汽车产业非常欣赏这种灵活性,因为它能够在产品发布后修改缺陷(软/硬件均可)。

  在任何嵌入有符合 ISO 26262安全相关要求的功能的 ECU 中,涉及该实现方案的软硬件必须根据其分类满足一定程度的保护要求。从软件的角度讲,它必须体现出抗干扰能力,即运行在 ECU 中的非安全相关代码一定不能危及同一 ECU 中安全相关类的代码的运行。这种隔离是保证安全相关功能与非安全相关功能在同一处理器上正确并行运行所必须的。一般来说,在可编程逻辑中管理这些指标比在 MCU 中具有更大的灵活性。

  对于面向功能安全的存储器保护策略,有必要确保只能授权的安全软件组件有权对特定安全相关信号进行写入存取。在 MCU 器件环境中,存储器分区提供了一种故障约束机制,能够将软件应用彼此分离,避免其间发生数据错误。可编程逻辑很有可能实现一种更有效的自我保护机制。可编程逻辑可以通过专用的单个双端口存储器来管理与安全信号相关的 RTE 缓存,这样数据从写端口写入,从读端口读取。采用这种方法,可以采用专用的硬件控制器给写入或读取这些来自软件侧的信号设置不同的约束条件。这种方法也可以采用寄存器来实现。

  能够在 ECU 系统中导入定制硬件解决方案是 FPGA 的一大优势,特别是对安全相关的功能而言。具体而言,对 I/O 引脚和 GPIO 控制器,在安全功能中涉及的引脚布局可以组合成定制的 I/O 端口,仅供 ECU 中的安全组件访问,与器件的其余引脚分离。这是将系统的安全相关引脚与非安全相关引脚分开的理想办法,从设计上避免了干扰的发生。任何对非安全引脚的访问都不会破坏安全引脚的状态,因为安全引脚只受安全相关代码的管理。这种构思的具体描述见图 4。

图4 软/硬件联合设计的安全架构,可将安全相关端口和非安全相关端口隔离开来,以保证无干扰  
图4 软/硬件联合设计的安全架构,可将安全相关端口和非安全相关端口隔离开来,以保证无干扰

  另外,还能够根据应用或处理该应用的软件组件的需求定制每个 GPIO 端口的大小,从而避免将 GPIO 端口转换为不同应用共享的物理资源,如MCU端口的情况。用这种方法,FPGA中每一个由不同软件组件(比如车窗升降器、雨刷、外后视镜等)管理的应用都能够将自己特定的端口映射到系统存储映射中特定的寄存器。这在 MCU 平台上无法做到,因为 MCU的端口有固定尺寸(一般为8、16 或 32 位宽)且按字长寻址,而非按位寻址。因此在采用 MCU 的情况下,这种控制寄存器在程序执行的时候变成了有多个 SWC 访问的共享资源。

  我们可以把用于 GPIO 控制器的策略扩展用于其它标准外设。这样 AUTOSAR 借助 SWC 概念在顶层提倡的功能分区和隔离思路也可以在可编程硬件的帮助下推广运用到较低层的资源上。这种技术如果采用基于标准 MCU 器件的静态硬件解决方案是无法实现的。

  我们上文介绍的用于 MCU 标准外设的隔离策略也可以用于安全功能的各个通道或数据路径。这一特性尤其适用于按 ISO 26262 标准的 ASIL 分级组织的精细分类安全目标(见侧边栏)。此项功能可用于将各个通道或者数据路径分解成较低 ASIL 级别的冗余分区,这样每一个通道或路径都以冗余方式运行,后续根据各自的新级别予以实现。这种基于冗余的安全策略是选择可编程逻辑的又一理由,因为可编程逻辑能够在同一器件中多次例化多个相同、独立的处理引擎。另外,满足某个 ASIL 级别的要求用架构方法(硬件)往往比用抽象软件能够更轻松明晰地证明,特别是像抗干扰这样的功能。C 编程语言中的栈溢出或是数据指针处理不当可能会给系统带来出乎意料的安全性问题。

  这种基于冗余的安全策略是选择可编程逻辑的又一理由,因为可编程逻辑能够在同一器件中多次例化多个相同、独立的处理引擎。

  可编程逻辑的灵活性及其对功能安全的适用性还带来另一项设计优势,就是可以采用三模冗

  余 (TMR) 策略。这是航空航天应用中用于缓解单粒子翻转 (SEU) 风险的常见方法。这种缓解方案由三个相同逻辑电路构成,并行执行相同的任务,对应的输出由一个多数表决电路进行比较。采用硬件实现这种策略效率很高。

  另外,在这个高度关注成本和功耗的市场上,赛灵思 Zynq-7000 EPP等一些可编程逻辑器件能够支持多项降低系统总体功耗的功能,其中的部分功能是从 MCU 继承而来。像处理系统的仅加电模式、休眠模式和外设独立时钟域这样的功能能够大幅降低器件待机期间的动态功耗。

  某些可编程逻辑器件在结构中配备有硬核处理器,便于设计人员第一步先用软件开发整个系统功能,就像他们寻常在 MCU 平台上所做的一样,随后逐步地在设计中增加硬件,将部分设计移植到可编程逻辑资源。这种方法能够让设计人员为解决方案开发出不同的版本,而且与纯软件方法相比,能够实现在定制硬件中综合部分功能的优势。

  在运行时可重配置硬件上进行 ECU 设计

  在探讨完毕借助可编程逻辑在静态硬件和软件上实现 ECU 的优势后,我们接下来探讨采用基于 SRAM 并具备运行时部分可重配置功能的 FPGA 设计 ECU。部分可重配置技术能够为汽车设计人员提供更多优势。

  事实上,其中的一大优势是如果 FPGA 包含有不必在启动时(如在 ECU 唤醒或加电)配置的部分可重配置区域,可以缩短系统启动时间。不支持动态部分可重配置的 FPGA在加电时需要配置所有的 FPGA 资源,但运行时可重配置 FPGA 只需下载部分位流进行部分重配置。

  由于当今先进的 FPGA 器件具有巨大的容量,故在加电时下载完整的位流会引起可观的配置时间开销。运行时部分可重配置技术能够显著地缩短这种配置时延。在那种情况下,有可能在加电时只配置一个最起码的子系统(即引导载入程序和立即需要的部分系统应用),让系统其余部分保持待机状态,直到有必要初始化为止。如果系统在加电或唤醒时需要快速响应,可将这种启动工作划分为两个阶段,以加快初始化过程。为此,可将系统架构分解为一个静态域和一个或者多个部分可重配置域 (PRR)。静态域涵盖负责执行启动过程的系统(一般来说是主机 CPU),以及可重配置引擎和通往位流库的数据链路。由特定部分位流描述的其他域可按应用需求,随后下载。

  另外,如果禁用 PRR 域,则可以让器件的功耗与禁用区域部分成比例降低。在使用汽车电池供电的 ECU 中,节能模式尤为重要。为此,在车辆未使用时(即处于休眠模式时),车载 ECU 可使用低功耗模式,以让 ECU 功耗保持最低。同样,可以在不需要的时候使用空白位流禁用 FPGA 的部分区域,减少逻辑活动,从而降低动态功耗。

  在采用运行时可重配置逻辑的系统中,汽车设计人员还可使用一种从航空航天应用中借鉴来的重配置技术。重配置(configuration scrubbing) 可以将系统从因单粒子翻转 (SEU)和电磁干扰造成的 SRAM 故障中恢复过来。定期重新配置硬件外设可保证系统在出现故障时自我修复。另外,这样也可以将故障的最大时长限制在重配置时间间隔内。这种技术也通常运用在软件中,作为一种常见的抗干扰保护措施,例如 MCU 外设的定期重配置。

  另一项运行时部分重配置技术的灵活性带来的有前景的功能是在 FPGA 资源的某个特定二维位置出现永久性或不可修复的电路故障,比如影响到特定逻辑单元或 RAM 模块时,可通过功能重定位实现故障修复。一旦发现有硬件或软件故障出现,可以在运行中将所需的功能自动重定位到同一 ECU 中的可编程逻辑器件的其他部分。虽然这个构思是可行的,但这项功能还没有得到当今的自动化工具的完全支持。

  适用于汽车产业的运行时可重配置计算技术最强大的特性无疑是共享的硬件资源上功能的实时时分复用。可以对由 ECU 中的相同计算资源处理的功能性应用进行时间共享,如果应用间相互独立(例如,当车辆向前直行驶时使用行车道偏离预警功能,倒车时,则切换到后视摄像头视图或停车辅助应用)。这种设计思路可以帮助降低此类嵌入式系统的成本和复杂性,释放空间,减轻车身重量。

  这种设计思路还可用于实现特定算法在不断变化的环境条件或者外部条件中的自适应性。例如,给定的引擎控制算法可通过部分可重配置自主调整部分硬件模块,以在任何运行温度下或电池电压下实现理想的运行。同样的理念对通信系统也适用,比如可以设计某种加密控制器,能够在运行中运用特定的参数函数制定专门的安全等级。另如,可以设计某种 ECC 加密器/解密器 IP,用于在高噪声通信信道中检测和修改数据传输错误,能够根据感应到的信噪比动态适应其硬件架构。

关键字:FPGA  ECU设计  AUTOSAR  ISO 编辑:神话 引用地址:基于FPGA的汽车ECU设计充分符合AUTOSAR和ISO 26262标准(四)

上一篇:基于FPGA的汽车ECU设计充分符合AUTOSAR和ISO 26262标准(二)
下一篇:基于FPGA的汽车ECU设计充分符合AUTOSAR和ISO 26262标准(三)

推荐阅读最新更新时间:2023-10-12 20:49

基于FPGA的电容在线测试系统设计
PCB在焊接完成后,需要对其元器件进行测试,传统的方法是将其焊离PCB板后测试,但该方法不仅麻烦、效率低,并且容易损伤电路板而极不实用;另一方法就是人工结合机器进行测试,但这需要测试人员有一定的经验,也给测试带来了一定的不确定性,使得测试结果的精准度无法达到现代电路板的可靠性要求。所以,本文研究了一种可行的、简单实用及高精度的电容在线测试电路。另外,随着EDA技术的快速发展,FPGA以其高集成度、高可靠性及灵活性等特点正在快速成为数字系统开发平台,在多种领域都有非常广阔的应用前景。本设计结合上述两特点,设计了一种基于向FPGA内植入Nios II嵌入式软核作为控制器的电容在线测试电路。 1.测试原理 在线测试的基本思想是应用电气隔
[电源管理]
基于<font color='red'>FPGA</font>的电容在线测试系统<font color='red'>设计</font>
利用FPGA解决手持设备MPU功耗问题
消费类手持设备市场正呈跳跃式发展。便携式产品处理能力不断增加,所支持的应用越来越多;产品更新换代速度加快,新产品必须满足上市时间要求,以便获得最大的市场机会;产品生命周期的缩短要求缩短开发周期,同时更加强调可复用性和可重复编程能力。新兴手持设备市场还有一个有趣的趋势,即一个系列中的每种设备的出货量越来越少,但系列设备间的定制功能却越来越多,进而有效提升了产品的总出货量。这样,关键挑战就变成了如何开发一个可广泛复用同时又可定制的系统。 为应对上述挑战,越来越多的设计人员开始使用FPGA进行手持产品的开发。FPGA的功能日益强大和丰富,而门数、面积和频率也在不断增加。FPGA的开发和周转时间要比定制ASIC短得
[单片机]
利用<font color='red'>FPGA</font>解决手持设备MPU功耗问题
FPGA助边缘长智能 Lattice低价抢攻消费市场
随着物联网(IoT)的应用领域逐渐扩大,导入边缘运算的产品亦逐渐多元,芯片设计对于功耗与成本的要求日益提升。 近日,半导体厂商推出低价FPGA方案,瞄准对于成本最为敏感的消费电子市场,抢攻边缘运算商机。 客制化智能互连解决方案市场供货商莱迪思半导体(Lattice Semiconductor)亚太区资深事业发展经理陈英仁指出,少量多样是物联网产品的特色之一,对于精准度、功耗的需求亦有所不同,更需要灵活的处理单元连接。 除此之外,现今的物联网布局方式是设法将现有产品联网化并赋予智能,在这样的情况下深度学习相关芯片该如何见缝插针、尽量不更动原有架构便成为一大挑战。 随着传感器类型与数量不断增加,须部署更多运算资源以进行实时数据处理
[半导体设计/制造]
基于单片机的FPGA并行配置方法
摘要:讨论了基于SRAM技术的可编程逻辑器件FPGA的编程方式,并以ALTERA公司FLEX10K系列器件为例,提出了一种利用单片机AT89C52对FPGA进行在线PPA(被动并行异步)配置的实用方法。实践表明,用单片机对FPGA进行并行配置,具有配置时间短、准确率高、易于实现等优点,该方法可以广泛地应用于不同领域。 关键词:单片机 PPA FPGA 配置 在当今变化的市场环境中,产品是否便于现场升级、是否便于灵活使用,已成为产品能否进入市场的关键因素。在这种背景下,Altera公司的基于SRAM LUT结构的FPGA器件得到了广泛的应用。这类器件的配置数据存储在SRAM中。由于SRAM的掉电易失性,系统每次上电时,必须重新
[单片机]
FPGA架构的功耗及影响功耗的用户选择方案
本文将介绍FPGA的功耗、流行的低功耗功能件以及影响功耗的用户选择方案,并探讨近期的低功耗研究,以洞察高功率效率FPGA的未来趋势。   功耗的组成部分   FPGA的功耗由两部分组成:动态功耗和静态功耗。信号给电容性节点充电时产生动态功耗。这些电容性节点可以是内部逻辑块、互连架构中的布线导线、外部封装引脚或由芯片输出端驱动的板级迹线。FPGA的总动态功耗是所有电容性节点充电产生的组合功耗。   静态功耗与电路活动无关,可以产生于晶体管漏电流,也可以产生于偏置电流。总静态功耗是各晶体管漏电功耗及FPGA中所有偏置电流之和。动态功耗取决于有源电容一侧,因而可随着晶体管尺寸的缩小而改善。然而,这却使静态功耗增加,因为
[嵌入式]
<font color='red'>FPGA</font>架构的功耗及影响功耗的用户选择方案
低功耗高性能 Actel携FPGA勇闯医疗电子蓝海
“中国医疗电子市场日渐火热,未来将会有越来越多的厂商投身这一领域,Actel在FPGA方案方面积累了一些经验,希望能为在座的各位医疗设备领域的工程师们的开发提供一些便利。” 在日前举办的第三届中国国际医疗电子技术大会(CMET2010)上,Actel技术支持/培训经理戴梦麟先生表示,“Actel非常愿意在中国医疗电子产业面临突破与升级的关键阶段贡献自己的力量。” 戴梦麟自信满满的表示,Actel在小的封装领域处于行业的领导地位,可供选择的方案比其他公司要多。目前在国内和国外已有很多公司使用Actel的产品,包括最新的家用设备,比如胰岛素泵、胎儿监视器、心率监测器等,另外有临床诊断和治疗设备,输液泵、病人监
[嵌入式]
低功耗高性能 Actel携<font color='red'>FPGA</font>勇闯医疗电子蓝海
了解LabVIEW FPGA和软件设计射频仪器的优势所在
概览 无线设备的数量、通信标准的多样性,以及调制方案的复杂度,每一年都在不断增加。而随着每一代新技术的诞生,由于使用传统技术测试无线设备,需要大量更复杂的测试设备,其成本也在不断提高。 使用虚拟(软件)仪器与模块化I/O相结合是一种最小化硬件成本并减少测试时间的方法。软件设计仪器的新方法使得射频测试工程师无需凭借自定义或特殊标准的仪器,就能以多个数量级的幅度减少测试时间。 阅读此文可以帮助您了解如何使用NI LabVIEW FPGA来设计和自定义您的射频仪器,以及通过软件设计的仪器能为您的测试系统所带来的好处。 软件设计仪器简介 多年来,测试工程师一直在运用诸如LabVIEW的软件包来实现自定义射频测量系统,并与
[网络通信]
了解LabVIEW <font color='red'>FPGA</font>和软件<font color='red'>设计</font>射频仪器的优势所在
FPGA将成为传统DSP的有力挑战
宽带革命     市场环境的变化将会改变未来几年内DSP实现的方式。最显著地,宽带革命将带来最大的挑战。 宽带革命是由传统上分别属于不同领域的许多技术的融合所引发。其中包括计算、电信/无线、视频、图像和网络等。图1突出了由这一融合而新产生的一些新应用。     此类新兴应用需要处理的模拟和数字数据量呈指数型增长。这又进一步加大了对更快的DSP的需求。虽然摩尔定律仍适用于目前最快的DSP,但在所需要的性能水平与实际DSP器件所提供性能水平间的差距仍在不断增大(参看图2)。因此很明显,DSP要满足宽带革命所提出的挑战必须寻求新的数据处理方法。     此外,今天快速变化的市场
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved