基于PIC单片机的智能化逆变电源控制系统

最新更新时间:2013-10-08来源: 互联网关键字:PIC  单片机  逆变电源  控制系统 手机看文章 扫描二维码
随时随地手机看文章

摘要:针对现代电源变频调幅的要求,提出了利用PIC16F873产生SPWM波控制IR2136触发IGBT产生PWM波作用于逆变器产生标准的正弦波形,从而实现变频调幅。同时利用AD模块对逆变桥输出进行采样并进行滤波处理,实现对系统的PI闭环控制。通过MATLAB中的SIMULINK组件进行仿真分析,结果表明此方案输出电压动态响应速度快,具有良好的精度控制及实时性、波形失真小、可靠性高。

  随着科学技术的进步,电源质量越来越成为各种电气设备正常和良好工作的基础。电源技术领域的一个持续的研究课题即是研究作为电子信息产业命脉的电源的可靠性和稳定性。

  而逆变器作为电源的核心部分,其调制技术很大程度上决定了电源输出电压的质量。目前最常用的调制技术是正弦脉宽调制(SPWM)。随着单片机的出现及其广泛应用,智能化控制方法已经逐渐替代传统的分立元件电路产生方法或是专用芯片产生方法。智能化逆变电源的优势在于它不仅能实现调制信号的输出,还为系统数据参数的监控、处理及显示提供接口。同时它与现代计算机技术更好地结合产生了故障自诊断和自我保护功能,可提高系统的稳定性。

  在充分考虑工业控制成本及稳定性要求的前提下,本设计采用PIC单片机作为控制核心,再辅助相关外部电路,组成一个具有稳定和智能化等优点的逆变电源控制系统。

  一、具体电路设计

  单相桥式逆变电路如图1所示。[1]电路正常工作情况下,两对开关管需要两组相位相反的驱动脉冲分别控制,使VT1、VT4同时通断和VT2、VT3同时通断。输入直流电压为220VAC,逆变器的负载为R.当开关VT1、VT4接通,VT2、VT3 断开时时,电流流过VT1、R和VT4,负载上的电压极性是左正右负;当开关VT1、VT4断开,VT2、VT3接通时,电流流过VT2、R和VT3,负载上的电压极性反向,直流电即转变为交流电。若要改变输出交流电频率,改变两组开关的切换频率即可,继而得到正负半周对称的交流方波电压。负载为纯阻型时,负载电流电压波形相同,相位也相同;负载为感性时,电流滞后于电压,二者波形不同。输出为相当于三个差120°相位的单相逆变电路的叠加,即三相逆变,其原理不再赘述。

  图1 单相桥式逆变电路

  图1 单相桥式逆变电路

  二、产生PWM波芯片选择

  本设计电路为单相全桥逆变电路,其主电路是典型的DC-AC逆变电路。由单片机对LC滤波后的电压进行AD采样,把所得的数据输入到PIC16F873单片机,由PIC16F873单片机芯片对数据进行处理,并输出相应的SPWM信号给IR2136驱动电路,控制逆变电路的开关管通断,从而控制逆变器的输出,调节电流监测系统的工作温度,保护控制系统电路。另设有键盘、控制频率及幅值,同时显示模块,用于显示系统的工作状态。

  PIC16F873单片机电路是此系统的控制核心电路,主要发挥以下两个方面的作用:为驱动电路提供SPWM控制信号,控制逆变桥的通断;对输出电压进行AD采样。

  集成电路IR2136芯片主要作用是产生相应的触发电平来控制逆变电路的开关管通断,从而控制逆变器的输出。除此以外,由于系统输出的不仅有SPWM波,还包含低次以及高次谐波。本设计采用了LC滤波电路以达到最终输入标准正弦波的目的。

  ω=2R/L为其截止角频率,R为公称阻抗,设截止频率为fc,则有:

  ω=2R/L为其截止角频率,R为公称阻抗,设截止频率为fc

三、系统软件设计

  软件设计的核心部分是SPWM信号的产生。本设计采用三角波作为载波、正弦波作调制波的对称规则采样法较为经典,得到一系列幅值相等但宽度不等的矩形波。然后使用在线计算的方法计算矩形波的占空比:

  设N为载波调制波比,即有N=fc/fr.其中fc为载波频率,fr为调制波频率。本系统的SPWM信号由单片机产生,故载波频率可由下式计算:

  载波频率可由下式计算

  其中,变量N代表分频因子(1、8、64、256或1024),fclki/o是MCU时钟。

  设M=UR/UC,为调制深度,其一般取值范围为0~1,其中UC为载波幅值,UR为调制波幅值。改变调制波的幅值就能使输出的基波电压幅值发生变化。

  根据规则采样法的原理,假设一个周期内有N个矩形波,则第i个矩形波的占空比Di为:

  第i个矩形波的占空比Di为

  通过设置单片机,利用上述公式计算出占空比使之与计数器的TOP值相乘形成一个正弦表。然后将数据送到比较寄存器中,配置单片机I/O口寄存器,在PD4口输出SPWM信号。整个SPWM产生程序流程图及实时反馈图如图2:

  整个SPWM产生程序流程图及实时反馈图

  图2 SPWM 产生程序框图

  常用的正弦调制法分为同步调制法和异步调制法。同步调制法在调制波的频率很低时,容易产生不易滤掉的谐波,而当调制波频率过高时,开关元件又难以承受;异步调制法的输出波形对称性差,脉冲相位和个数不固定。本软件设计时采用了分段同步调制法,[4-6]吸收上述两种方法的优点,且很好地克服各自的缺点,得到特性较好的正弦波。其具体操作为:把调制波频率分为几个载波比不相同的频段,在各个频段内保持载波比恒定,通过配置单片机内部的载波频率实现输出基波频率的变化,即改变计数器的TOP值,实现调频功能。选取的原则为:

  输出频率高的频段采用低载波比,输出频率低的频段采用高载波比。同时,载波比选取为3的倍数以得到严格对称的双极性SPWM信号。本系统中将频段分成五段,具体见表1:

    表1 频率分段与载波比取值

  表1 频率分段与载波比取值

  对输出电压的实时反馈是软件设计的关键部分。电网的波动或是负载的变化可能导致输出电压不稳定,因此为了实现输出电压的动态稳定特性,在系统中加入PID增量数字闭环控制,公式如下:

  在系统中加入PID增量数字闭环控制,公式如下:

  其中Kp=1/σ是比例系数,Kl=KpT/Tl是积分系数,Kl=KpTD/T是微分系数。结合单片机中的A/D转换功能模块与PID闭环控制,可以很好地修正各开关周期的脉宽,达到动态稳定的目的。

四、逆变仿真结果

  在逆变部分的仿真中,本系统使用的是M AT L A B中的SIMULINK组件。电路原理为利用PIC16F873单片机输出PWM波控制IR2136进而控制晶闸管的栅极导通,从而实现变频调幅。

  在此三相逆变电路中,运用三相全桥进行LC滤波之后得到输出。同时,该系统中还包括一个电压负反馈和一个电流负反馈系统。这样的设计可以对一些扰动起到一定的抵抗作用,使得输出的三相电压较为稳定,有较好的相角裕度和一定的幅值裕度,但在实际的逆变过程中可能出现同一桥臂的两个IGBT同时导通所导致的短路现象。考虑上述情况后,对上述电路原理图进行了改进,如下图3所示,加入了死区,其仿真结果如图 4所示:

   图3 带死区的调制波、三角波调制电路

  图3 带死区的调制波、三角波调制电路

  图4 带死区的调制波、三角波调制电路波形

  图4 带死区的调制波、三角波调制电路波形

  在图4中波形在下波峰处发生畸变,这是由于在下桥臂上引入了死区非线性所导致的结果,属于附加畸变。

  五、结论

  上述的实验结果表明,工业条件下对于电源的要求可通过利用PIC16F873单片机输出PWM波控制IR2136进而控制晶闸管的栅极导通的方法实现,且该方法具有谐波较小、滤波电路较为简单的优点。因此,它在高性能中变频调速、直流并网等领域有着广泛的应用前景。同时,采用单片机来产生SPWM信号有着不可比拟的优势,是智能化电源领域的必然发展趋势。

关键字:PIC  单片机  逆变电源  控制系统 编辑:神话 引用地址:基于PIC单片机的智能化逆变电源控制系统

上一篇:EDA工具如何帮助设计师实现EWIS一致性
下一篇:单片机在现代电子系统的地位综述

推荐阅读最新更新时间:2023-10-12 20:49

e络盟即将发售Raspberry PiBuild HAT全新配件和电源
这款革命性的Raspberry Pi Build HAT采用RP2040微控制器,可将Raspberry Pi计算机与乐高®拼搭系统进行集成 中国上海,2021年11月8日– 安富利旗下全球电子元器件产品与解决方案分销商e络盟即将发售革命性产品Raspberry Pi Build HAT和电源,进一步扩大其Raspberry Pi系列产品阵容。Raspberry Pi Build HAT能够将Raspberry Pi计算机集成至乐高®拼搭系统,可为学生、教师、电子爱好者新手和创客进行新项目设计提供更大的灵活性及更低成本。 Raspberry Pi Build HAT与乐高®拼搭系统结合使用能够构建出机器人、汽车、游戏、智能
[电源管理]
e络盟即将发售Raspberry PiBuild HAT全新配件和电源
ARM嵌入式汽车节能控制系统
引言 由于各种原因,公交车总是不断重复加速—减速或停车—再加速的过程。通过加装本节能装置,当汽车需要制动时,在主控单元的控制下,可将汽车行驶时具有的巨大动能通过空气压缩机转化成高压气体的势能并储存起来,从而实现汽车减速或停车。当汽车需要启动或加速时,用储存起来的高压气体势能代替燃油来驱动汽车,从而实现汽车能量的回收再利用,达到节能的效果。同时由于汽车在起动或加速时能耗最大,如果汽车是用燃油驱动,则此时油料燃烧不充分,燃烧效果最差,而且产生的噪音最大。 系统工作原理 本系统主要由三部分组成,即检测部分,控制部分和执行机构。检测部分包括踏板位置传感器、曲轴位置传感器、压缩机活塞位置传感器、汽车运行速度传感器、储气罐压
[汽车电子]
瑞萨单片机学习笔记(2)中断的使用
  前面章节有提到通过设置option_byte来配置看门狗,我手上拿到的项目工程是没有配置option_byte的,但是发现coder是在程序中见缝插针般插入以下代码:   WDTE = 0xac;   这个赋值操作就是喂狗,至今我也不知道option_byte的复位值是多少,从官网下载的数据手册也没有说明。其实可以通过一些方法来验证,即不设置option_byte,不喂狗,看程序是否会不停复位。废话说完,言归正传,我们用定时器来实现定时喂狗。   这里用到的是78K0/FY-2系列单片机,使用TM51作为定时器,需要配置的寄存器有:   TCL51 选择定时器时钟频率,是在外部硬件时钟频率的基础上进行分频。
[单片机]
PIC16F877的应用--AD转换器
PIC16F877单片机片内有8路10位A/D转换器,引脚②~⑤为AN0~AN3、⑦~⑩为AN4~AN7。MPLAB-ICD的实验板上16F877单片机的RA0口接了一只供有电压的10kΩ电位器,在D口(RD0~RD7)接了8只LED,如附图所示。笔者用16F877 A/D转换通道其中一路作A/D转换,以说明A/D转换编写程序的方法和在线调试及编程。 在附图中,笔者把R6的可变输出(电压模拟量)端接到RA0/AN0作为模拟量输入;用D口(RD0~RD7)的8只LED显示A/D转换的结果(按二进制显示)。 一、 建立A/D转换源程序的要点 编写10位的一路A/D转换程序看似简单,但对初学者却有一定难度,因为编写A/D转换程序时,
[单片机]
<font color='red'>PIC</font>16F877的应用--AD转换器
基于单片机的系统外扩展的存贮器
一、实验目的 1、学习片外存贮器扩展方法。 2、学习数据存贮器不同的读写方法。 3、学习片外程序存贮器的读方法。 二、实验内容 1.实验原理图: 2、实验内容 (1)使用一片2764EPROM,作为片外扩展的程序存贮器,对其进行读。 (2)使用一片6264RAM,作为片外扩展的数据存贮器,对其进行读写(使用键盘监控命令和程序运行两种方法)。 3、实验说明 (1)在使用键盘监控命令读片外扩展的程序存贮器2764中内容时,由于本系统中该程序存贮器作为用户目标系统的程序存贮器,因此DVCC系统必须处于仿真2状态,即“H.....”态,用MEM键即可读出。 (2)在使用键盘监控命令读写片外扩展的数据存
[单片机]
基于<font color='red'>单片机</font>的系统外扩展的存贮器
单片机驱动DS1302时间DS18B20温度12864液晶显示完整程序设计
程序说明:这是一个用51单片机驱动DS1302时间模块+DS18B20温度传感器模块+12864液晶显示完整程序设计实例,有四个键盘KEY0 到KEY3,key0是修改时间的 首先是秒到分到时到年到月到日到星期 key1是加1 key2是减一 在修改时间状态再按一下key3的时候就出去并修改时间日期,在平时状态按着key3再按着key2 就会打开lcd 的灯 单单是只按key3那就是把灯关了。 文件一:DS1302驱动.c #include reg52.h //ds1302 sbit sclk=P0^3; sbit io=P0^4; sbit rst=P0^5; sbit acc0=ACC^0; sbit acc
[单片机]
跟我学51单片机(二):单片机内部定时/计数器和中断系统
上讲通过讲述用单片机控制一个外部的LED闪烁实验来向读者介绍了单片机的工作原理与开发流程。这一讲将介绍单片机内部非常重要的两个资源——定时/ 计数器和中断系统。通过该讲,读者可以掌握定时器的工作原理和单片机的中断系统。   从而设计定时器计数程序和中断服务程序。   一、原理简介   首先让我们举闹钟为例,将它定时在一分钟后闹铃,这就需要秒针走一圈(60 次)。即一分钟时间转化为秒针走的次数,也就是计数的次数,计数到了60 次然后闹铃,而每一次计数的时间是1 秒。   单片机内部的定时/ 计数器跟闹钟类似,可以通过编程来设定要定时的时间、定时时间到了进行相应的操作。那么在单片机内部计数一次的时间是多少呢,
[单片机]
跟我学51<font color='red'>单片机</font>(二):<font color='red'>单片机</font>内部定时/计数器和中断系统
无线手持智能交通灯控制系统
城市道路交错分布,车辆穿梳,行人熙攘。那么靠什么来实现这井然秩序呢?靠的是交通信号灯的自动指挥系统。交通灯是城市交通的重要指挥系统。交通信号灯作为管制交通流量、提高道路通行能力的有效手段,对减少交通事故有明显效果。本文设计了一种以STC89C52单片机为核心,通过Zigbee模块遥控进行无线控制的智能交通灯系统,交警可通过无线遥控来实现红绿灯时间长短的改变以适应不同的交通状况和人群数量,同时数码管显示红绿灯剩余时间,充分体现了物联网的控制思想并拥有一定的应用价值和市场前景。 1、系统方案设计 文章以STC89C52单片机为核心设计了一个十字路口交通灯的无线控制系统,通过Zigbee模块遥控来实现红绿灯时间长短的改变,用两个数码
[单片机]
无线手持智能交通灯<font color='red'>控制系统</font>
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved