采用+12V至±5V电源的精密、16位双极性输出电压源

最新更新时间:2013-10-16来源: 互联网关键字:电源  16位  双极性 手机看文章 扫描二维码
随时随地手机看文章

电路功能与优势

图1所示电路提供精密、16位、±2.5 V低漂移双极性电压输 出,采用+10 V至+15 V单电源供电。 AD5668 8通道denseDAC 的单极性电压输出由AD8638 自稳零型运算放大器放大并进行电平转换。AD8638的最大漂移贡献仅为0.06 ppm/°C。外 部基准电压源REF192确保最大漂移为5 ppm/°C(E级),并为AD8638电平增益和转换电路提供低阻抗伪地电压。

该电路针对采用单个+12 V供电轨的系统中经常出现的一个 问题提供了高效解决方案。合适的印刷电路板(PCB)布局 和接地技术可确保ADP2300 开关稳压器不会降低电路的整 体性能。

 

图1. 采用±5V电源的双极性输出DAC电路

电路描述

AD5668是一款通过SPI接口控制的16位、8通道、电压输出denseDAC。它包含一个片内基准电压源,最大漂移为10ppm/°C。上电时,片内基准电压源关闭,因而可以用外部基准电压源。内部基准电压源通过软件写入使能。图1所示的电路中采用了外部REF192,因为需要低输出阻抗来驱动AD8638运算放大器的2.5 V伪地基准电压。

AD5668的输出电压在TP1处为0V至2.5V,此信号驱动AD8638运算放大器的同相输入端。运算放大器的信号增益为1+R2/R1,因此R1=R2时等于2。通过以2.5V基准电压 驱动R1,向运算放大器输出中注入2.5V的负偏移。因此,TP2的双极性输出电压摆幅为−2.5V至+2.5V。

该电路采用单电源供电,标称电压为12V,可在10V至15V之间变动。经过调节的−5 V供电轨由ADP2300开关稳压器进行反相buck-boost配置连接而产生。该电路可使用 www.analog.com/ADIsimPower上提供的ADIsimPower 程序来设计。L1耦合电感用于为采用Zeta配置的电路产生未经调节的5V电源。该电路能够针对较小的输出电流产生高效 率。

图2和图3分别显示了在TP2(双极性输出)处测量的积分非线性(INL)和差分非线性(DNL)。

图2

图2. 双极性输出(TP2)的INL性能

图3

图3. 双极性输出(TP2)的DNL性能

图4和图5分别显示了在TP1(单极性DAC输出)处测量的INL和DNL。

图4

图4. 单极性DAC输出(TP1)的INL性能

图5

图5. 单极性DAC输出(TP1)的DNL性能

常见变化

AD5628和AD5648分别是AD5668的12位和14位版本。它们都有一个内部增益为2的片内基准电压源。AD5628-1/AD5648-1/AD5668-1内置一个1.25V、5 ppm/°C基准电压源,满量程输出范围可达到2.5V;AD5628-2/AD5648-2/AD5668-2和AD5668-3内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5V。上电时,片内基准电压源关闭,因而可以使用外部基准电压源。内部基准电压源通过软件写入使能。上述器件内置一个上电复位电路,确保DAC上电后输出0 V(AD5628-1/AD5648-1/AD5668-1、AD5628-2/AD5648-2/AD5668-2)或中间电平(AD5668-3)并保持该电平,直到执行一次有效的写操作为止。

AD8639是AD8638的双通道版本,可根据需要使用。图1中的电路使用单个AD8638来最大限度地减小八个通道之间的串扰。

可使用其他2.5V基准电压源,例如ADR4525,它拥有±0.02%的精度和最大2 ppm/°C的温度系数(B级)。

电路评估与测试

设备要求(可以用同等设备代替)

需要以下设备:

系统演示平台 (EVAL-SDP-CB1Z)

CN-0183 电路评估板(EVAL-CN0183-SDZ)

The CN-0183 评估软件

Tektronix TDS2024,4通道示波器

HP E3630A 0V至6V/2.55A、± 20 V/0.5 A三路输出直流电源

PC(Windows 32位或64位)

开始使用

将CN-0183评估软件光盘放进PC的光盘驱动器,加载评估软件。打开“我的电脑”,找到包含评估软件光盘的驱动器,打开Readme文件。按照Readme文件中的说明安装和使用评估软件。图6显示了评估软件主窗口。

图 6

图6. 评估软件主窗口

测试设置功能框图

图7为测试设置的功能框图。此设置允许通过示波器观察 DAC输出(TP1)和双极性输出(TP2)。

线性度测量要求使用可由PC通过USB端口读取的精密数字 电压表(DVM)。

图 7

图7. 测试设置功能框图

设置

将EVAL-CN0183-SDZ上的120引脚连接器连接到EVALSDP-CB1Z上的CON A或CON B连接器。使用尼龙五金配件,通过120引脚连接器两端的孔牢牢固定这两片板。将直流输出电源成功设置为+5 V、-5 V和+12 V输出后,关闭电源。

在断电情况下,将−5 V电源连接到J5-3上的−5V引脚,将+5V电源连接到J5-1上的AVDD引脚,将GND连接到J5-2和J4-2上的AGND引脚,将+12V电源连接到J4-1上的+12V引脚。或者,将链路2和链路3放在位置B,以便使用ADP2300为电路提供+5V至−5 V的电压。注意,这种情况下不需要AVDD和−5V。

接通电源,然后将SDP板附带的USB电缆连接到PC上的USB端口。接通EVAL-CN0183-SDZ的直流电源之前,请勿将该USB电缆连接到SDP板上的微型USB连接器。

表1

设置测试设备后,将示波器探头连接到TP1和TP2测试点。TP3、TP4和TP5测试点分别连接到基准电压、经过调节的+5 V和经过调节的−5 V。检查这些测试点电压是否正确(使用TP6接地)。

利用CD中提供的软件,用户能够通过向DAC中加载一个代码和选择基准电压源来设置VOUTA值。如果用户保留默认设置,将需要提供+5 V和−5 V电压,不需要+12 V。默认 设置使用外部REF192基准电压源,从而提供2.5 V (TP1)的满量程DAC输出,双极性输出(TP2)中则为−2.5 V至+2.5 V。加载0x0000可将DAC输出和双极性输出分别设置为0 V和−2.5 V。加载0x8000可将DAC输出和双极性输出分别设置为1.25 V和0 V。加载0xFFFF可将DAC输出和双极性输出均设置为2.5V。

关键字:电源  16位  双极性 编辑:神话 引用地址:采用+12V至±5V电源的精密、16位双极性输出电压源

上一篇:ADI实验室电路:集成冷结补偿的K型热电偶测量系统
下一篇:适合宽动态范围信号调理的灵活4通道模拟前端

推荐阅读最新更新时间:2023-10-12 20:50

飞兆半导体展示高能效电源解决方案
      提供可提升能效的高性能产品供应商飞兆半导体公司将在 IIC China 2009上,展示能帮助设计工程师满足不断演进的能效法规要求的解决方案。       飞兆半导体将通过多个交互式演示,重点介绍针对中国主要应用市场领域的高功效解决方案,如电源 (AC-DC 转换) 和照明、消费和显示、电机 、工业、便携 以及计算。       飞兆半导体将分别于2月26至27日在深圳展会2M11展台;3月5至6日在北京展会D1展台及3月9至10日在上海展会8E11展台上,展示能实现高能效并针对当地市场需求的解决方案,包括Power-SPM、IGBT、Tiny Buck™ 降压稳压器产品系列和绿色FPS ™ e-Series™
[电源管理]
高频电源变压器设计原则要求和程序
变压器利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。
[模拟电子]
用可编程电源管理单元实现电源定序
  在多电压轨环境中,电源定序历来是个备受关注的重要话题。   在电压升降过程中,数字信号处理器(DSP)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)和微处理器等器件对电源的顺序和电压都有着不同的要求。系统设计师要更充分的发掘电源管理器件的潜能,透彻的了解系统电源定序的需求。   电源定序的必要性   在研究具有电源管理工能的芯片之前,我们必须重视关系到器件工作和器件长期可靠性的问题。   如果电源定序不当,系统设计的可靠性就会降低,同时也会破坏系统内的静电释放(ESD)保护功能。尤其是当一些功能模块必须先于其它功能模块通电时,上述的电源定序问题更突显其重要性了。因为当芯片长期处于电源定序不当的
[电源管理]
用可编程<font color='red'>电源</font>管理单元实现<font color='red'>电源</font>定序
透过表面看本质 3特征教你看懂电源设计
  把透过表面看本质这个话题放在电源行业中,可能会令很多网友不解。如果电源通过表面就可以判断的话,那么还要专业的评测干什么呢?当然这里说看到的本质肯定是无法与专业的测试仪器相比,但是在大多数情况下,我们要是想快速判断一款产品的特点及优略,往往还是需要一些方法去进行,那么在电源行业中到底有没有这样的“潜规则”设计特征值得我们注意掌握呢?答案是肯定的。      我们先来简述下这些“潜规则”的特征一般以什么形式提现。首先说电源的特征出现在产品包装上,这是毋庸置疑的,从产品包装上我们可以读懂这款产品的全部设计理念与参数。当然如果你认为包装可能存在夸大宣传的话,那就参考第二点,电源铭牌是绝对最为准确的信息,除了一些山寨假电源虚标之外,大部
[电源管理]
透过表面看本质 3特征教你看懂<font color='red'>电源</font>设计
基于微控制器MSC1210的CSR电源控制系统设计
   引言   MSC1210美国德州仪器公司(TI)生产的高集成混合信号处理器件。它集成了一个增强型8051内核,8路24位高精度Δ-ΣA/D转换,21个中断源,16位PWM,全双工UART(并兼容有SPI功能),32K字节FLASH,片内SRAM可达1.2K字节。         MSC1210具有高的模拟和数字集成度,体积小,测量精度高,应用灵活等特点,因而该芯片可广泛应用于工业控制过程、智能发射机、智能传感器等领域。    1 微控制器MSC1210的工作原理   微控制器MSC1210是TI推出的一种集模拟、数字、闪速存储器于一体的高性能微控制系统。其应用范围十分广泛。使用增强的数字处理内核和高速闪存并带
[嵌入式]
技术文章—如何使用超低噪声LDO提供“干净”的电源
线性稳压器集成电路(IC)将电压从较高电平降至较低电平,且无需电感。低压差(LDO)线性稳压器是一种特殊类型的线性稳压器,其压差(需要保持稳压的输入和输出电压之间的差值)通常低于400 mV。早期的线性稳压器设计提供大约1.3 V的压差,这意味着对于5 V的输入电压,器件进行调节可实现的最大输出仅为3.7 V左右。然而,在当今更复杂的设计技术和晶圆制造工艺条件下,“低”大致定义为 100mV到300mV左右。 此外,虽然LDO稳压器通常是任何给定系统中成本最低的元件之一,但从成本/效益角度来说,它往往是最有价值的元件之一。除了输出电压调节之外,LDO稳压器的另一个关键任务是保护昂贵的后端负载免受恶劣环境条件的影响,
[电源管理]
技术文章—如何使用超低噪声LDO提供“干净”的<font color='red'>电源</font>
基于S3C2410X处理器和单片机实现多磁控管电源控制的设计方案
1、电路硬件整体设计 设计主要包括3个模块:1,人机交换模块(S3C2410芯片扩展电路)、2,功率输出模块(ATmega16L芯片扩展电路)、3,磁控管工作电路。人机交换模块主要用来接收使用者的命令数据,再传递给功率输出模块输出给定功率。同时接收功率输出模块电路中功率反馈回来的信息,使得使用者能对相应信息做出处理。整体框架如图1—1所示: 1.1基于S3C2410X处理器的控制电路设计 控制系统中采用韩国三星半道体公司的S3C2410X处理器作为主控制芯片。SBC2410X是一款基于ARM920T内核的16/32位RISC嵌入式微处理器,高性价格比,低功耗。应用该芯片作为主控制芯片,并扩展64M SDRAM、64M Nand
[单片机]
基于S3C2410X处理器和单片机实现多磁控管<font color='red'>电源</font>控制的设计方案
IGBT的电压型逆变器辅助开关电源的设计方案
电压型逆变电源的辅助开关电源其双管反激式开关电源能高效地提供多路直流输出,电路元件全部由分立式元件构成,抗干扰能力强,工作稳定可靠,因而能满足电压型逆变器等对电源的高可靠性要求。   下面以逆变电源控制回路供电的开关电源为例,介绍反激式开关电源的设计方法。该开关电源已通过检验并投运。    1 双管反激式开关电源的结构和工作原理   双管反激式开关电源的结构框图如图1所    2 主电路工作原理   原边线圈使用场效应管的反激半桥变换器线路如图2所示。   高频变压器原边绕组通过场效应管直接与直流电源Vs相连,2个场效应管需要同时通断。因此,通过一个相位相同但相互隔离的信号来驱动,通常采用一个小型的双绕组输出的变压器。和其
[电源管理]
IGBT的电压型逆变器辅助开关<font color='red'>电源</font>的设计方案
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved