高速仪表放大器学习:如何快速高效构建

最新更新时间:2013-11-05来源: 互联网关键字:高速  仪表  放大器 手机看文章 扫描二维码
随时随地手机看文章

电路功能与优势

构建仪表放大器的传统方法要用3个运算放大器和7个电阻,如图1所示。这种方法需要4个精密匹配的电阻,以获得良好的共模抑制比(CMRR)。如果匹配有误差,则最终输出也会产生误差。某些节点上,一皮法或两皮法(pF)的不平衡就会导致高频CMRR显著降低,而这一情况常被忽视。

该电路采用单芯片差动放大器和激光调整薄膜电阻构成输出放大器,因此可提供良好的直流和交流精度,而且所需器件比传统方法要少。

图1. 增益G = 201的仪表放大器(原理示意图,未显示去耦和所有连接)

电路描述

该电路采用 AD8271 差动放大器和两个ADA4627-1 放大器,具有低噪声、低漂移、低失调和高速特性。对于高阻抗信号源,由于ADA4627-1的JFET输入偏置电流极低,因而是输入级放大器的理想选择。

输入级运算放大器还必须具有低失调电压和低失调电压温度漂移特性。同时需具有良好的驱动特性,以便使用低值电阻,使电阻热噪声最小。

为使本电路正常工作,必须考虑与运算放大器相关的裕量问题。

使用增益带宽积大于数MHz的运算放大器时,精心考虑布局和旁路十分重要。典型的去耦网络由一个1 μF至10 μF电解电容和一个0.01 μF至0.1 μF低电感陶瓷MLCC型电容并联构成。

仅有低阻抗信号源时,为使噪声最低,必须保持低电压噪声。 AD8599 具有更低的噪声、失调电压漂移和电源电流,但输入偏置电流则高得多,而且所获得的带宽将比ADA4627-1低。AD8599和ADA4627-1测得的−3 dB带宽分别为56.6 kHz和87.6 kHz(参见图2)。

图2. 图1所示电路分别使用ADA4627-1和AD8599作为输入级时的带宽比较

对于高阻抗信号源,双极性运算放大器的输入偏置电流和输入噪声电流可能会导致误差。偏置电流产生I × R的压降,经过整体电路增益放大后,可能会导致数伏输出偏移。输入噪声电流也会被源阻抗放大,产生额外的噪声电压。为避免这种情况,应当使用ADA4627-1等JFET输入运算放大器。虽然其电压噪声稍高于AD8599,但电流噪声明显低于后者,因此配合高阻抗信号源使用时,整体噪声更低。

如图3和图4所示,AD8599适合用于较低源阻抗,ADA4627-1则更适合较高源阻抗。这里需要权衡:JFET运算放大器的输入电容高于双极性运算放大器,因此必须考虑RC时间常数。

图3. 对于低阻抗信号源(0 Ω),图1所示电路分别使用ADA4627-1和AD8599作为输入级时的噪声谱密度(RTO)比较

图4. 对于高阻抗信号源(66 kΩ),图1所示电路分别使用ADA4627-1和AD8599作为输入级时的噪声谱密度(RTO)比较

常见变化

AD8271或AD8274 可以配合各种运算放大器使用,以优化电源电流、信号带宽、温度漂移和噪声相关整体性能。

为获得尽可能低的温度漂移特性,可以使用一款自稳零放大器,例如AD8539,但带宽会降低,宽带噪声会提高。不过,对于10 Hz以下的带宽堪称绝佳选择。

选择本电路的运算放大器与差动放大器组合时,务必不要超出各放大器的输入共模电压范围。这一点常被忽视,但却是许多应用发生问题的原因。

如果第一级增益约大于5,可以考虑使用非完全补偿运算放大器,例如OP37,利用较低的电源电流获得较高的压摆率和信号带宽。

当输入信号为毫伏级、增益为1000时,第一级可以采用±2.5 V电源供电,既节省功耗又能提供更多的运算放大器选择,例如AD8539自稳零放大器。然而,如果输入共模电压范围较高,则第一级必须选择电源电压更高的运算放大器。

关键字:高速  仪表  放大器 编辑:神话 引用地址:高速仪表放大器学习:如何快速高效构建

上一篇:善用分立元件检测汽车高侧电流
下一篇:MAX44246高电压应用的高精度,低噪声运算放大器

推荐阅读最新更新时间:2023-10-12 20:51

基于ADμC7020的高速误码测试仪
长期平均误码率,简称误码率(BitErrorRate,BER),是光通信网络及设备的重要指标之一。目前光通信网络及设备正朝着小型化、高频率、高速率、大容量的方向发展,对作为测量仪器的误码测试仪速率及功能的要求也越来越高。虽然国内外仪器仪表厂,如安捷伦(Agilent)、泰克(Tektronix)等推出了各种高速误码测试仪,但是大多价格昂贵,并且系统复杂。所以,对于国内通信行业,开发一种价廉、方便、速率可达10 Gb/s的高速误码测试系统,具有实用价值。 1 系统概述 本误码测试系统由两部分组成:误码测试部分和上位机人机界面部分。其中误码测试部分由高速误码仪、光衰减器、光功率计和光源等组成。高速误码仪以微控制器ADμC7
[测试测量]
基于ADμC7020的<font color='red'>高速</font>误码测试仪
三运放仪器用放大器电路图
三运
[模拟电子]
三运放仪器用<font color='red'>放大器</font>电路图
赏析多款巨无霸功率放大器
巨无霸"(Monster)这个词既有正面的含义又有反面的含义,它可以形容为庞然大物,另一方面也可以说是非常具有挑战精神的事物。在Hi-Fi器材中,有时候过大的器材会令人觉得似乎不太适合家庭使用,但是这种器材无论是对制造者或是使用者来讲都意味着对音响的一种热爱和挑战。? 在90年代初,大功率放大器在海外十分盛行,后来沉寂了一段时间,近年来大功率放大器又逐渐恢复了昔日的雄风。对于这些名厂全力制造的巨无霸器材究竟会发出什么声音,长久以来笔者对这个问题充满了兴趣。巨无霸功率放大器的魅力在于其声音或气势十分惊人,高质素的放大器除了功率大之外还必须具备良好的线性,这样在低阻抗负载下也有电流通过。然而,平庸的设计往往无法确保超大功率下的低电平
[模拟电子]
大联大品佳集团推出基于NXP智能音频放大器的参考解决方案
近日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于恩智浦(NXP)的TFA9891高效D类音频放大器的参考解决方案,该解决方案在可靠性和EMC领域具有领先优势。下面就随嵌入式小编一起来了解一下相关内容吧。 大联大品佳代理的NXP的TF9891具有先进的扬声器升压和保护算法,支持便携式电子设备和音频组件的小型化,最大限度地发挥小型扬声器的效果。它可以在3.6V电源电压下将7.2W峰值输出功率提供给8 ohm扬声器。其内部升压转换器可将电源电压升高致9.5V,为音质的进一步改进提供了充足的预留空间。 图示1-大联大品佳推出的基于NXP的TFA9891智能音频放大器解决方案系统架构图 大联大
[嵌入式]
仪器、仪表的测量方法分类
  (1)直接测量 直接测量指的是被测量与度量器直接进行比较,或者采用事先刻好刻度数的仪器进行测量,从而在测量过程中直接求出被测量的数值的测量方式。这种方式的特点是测出的数值就是被测量本身的值。例如,用电流表测量电流,用电桥测量电阻等。这种方法简便、迅速,但它的准确程度受所用仪表误差的限制。   (2)间接测量 如果被测量不便于直接测定,或直接测量该被测量的仪器不够准确,那么就可以利用被测量与某种中间量之间的函数关系,先测出中间量,然后通过计算公式,算出被测量的值,这种方式称为闾接测量。例如,用伏安法测电阻,就是利用测出的电压与电流的值,用欧姆定律间接算出电阻的值。   (3)组合测量 如果被测量有很多个,虽然被测量(未知
[测试测量]
基于FPGA的高速FIR数字滤波器的设计
1 引 言 目前FIR滤波器的实现方法主要有3种:利用单片通用数字滤波器集成电路、DSP器件和可编程逻辑器件实现。单片通用数字滤波器使用方便,但由于字长和阶数的规格较少,不能完全满足实际需要。使用DSP器件实现虽然简单,但由于程序顺序执行,执行速度必然不快。 FPGA有着规整的内部逻辑阵列和丰富的连线资源,特别适合于数字信号处理任务,相对于串行运算为主导的通用DSP芯片来说,其并行性和可扩展性更好。但长期以来,FPGA一直被用于系统逻辑或时序控制上,很少有信号处理方面的应用,其原因主要是因为在FPGA中缺乏实现乘法运算的有效结构。本文利用FPGA乘累加的快速算法,可以设计出高速的FIR数字滤波器,使FPGA在数字信号处
[应用]
MAX44265低功耗关断模式CMOS运算放大器
MAX44265运算放大器的特点是在最大增益带宽比(物质GBW)提供电流,如手机,笔记本电脑和便携式医疗设备的电池供电应用的理想选择。此CMOS运算放大器的特点是超低输入偏置电流仅为1pA,轨到轨输入和输出,低电源电流4μA,从单一1.8V至5.5V的电源供电。有关其他节能,该IC还具有低功耗关断模式,将电源电流1nA并提出在高阻抗状态放大器的输出。该器件的整体增益的GBW产品具有200kHz的稳定。   它在节省空间的使用,0.9毫米x1.3毫米,6焊球WLP封装,规定工作在-40μC至+85微控制器扩展了工作温度范围   关键特性   为200kHz的GBW   超低4μA电源电流   至5.5V
[模拟电子]
仪表报警系统接线规律
1、所有电气仪表都受点火开关控制。这意味着当点火开关打开时,仪表才会接通并显示相关的信息。 2、各仪表的表头与其传感器串联。例如,燃油表和水温表会与相应的传感器连接,用于从传感器获取相关参数并显示在仪表上。一般情况下,燃油表和水温表还会接上仪表稳压器,以确保仪表显示的准确性和稳定性。 3、电流表串联在发电机正极与蓄电池正极之间。电流表的作用是测量电流流动的方向和大小。发电机充电电流会从电流表的正极进入,并且指针会偏向正端。而当蓄电池向其他负载放电时,指针会偏向负端。值得注意的是,有两种情况的电流不会通过电流表:一是超过电流表量程的负载电流,例如启动机、预热塞和喇叭的电流;二是发电机正常工作时向其他负载供电的电流。但需要注意的是,当
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved