分立元件低噪声、低失真前置放大器

最新更新时间:2013-11-09来源: 互联网关键字:分立元件  低噪声  低失真  前置放大器 手机看文章 扫描二维码
随时随地手机看文章

分立元件低噪声、低失真前置放大器

电路的功能

为音响设备研制的OP放大器有以低器声见长的NE5532A、LM833A等,但这些IC受到输入阻抗、高频特性、电源电压的制约。而采用分立元件的晶体管电路则具有按使用要求进行设计的自由度。

由于输入级采用了低噪声的并联J-FET电路,所以用在信号源输出电阻高的电路中也能获得低噪声特性。对于双极输入型的低噪声OP放大器来说,当信号电阻降低时,噪声系数也变小。

电路工作原理

输入级是由TT7构成恒流偏置的FET送去放大电路,每组各3个FET并联,以求实现低噪声。在J-FET电路中,噪声特性不会因偏流而发生很大变化,所以可以确定减少失真值。漏极电阻RD(即R2、R3)与该级的电压增益(AV≈GM.RD)有关,当需要较大的开路增益时,可加大漏级电阻或增加有源负载电路。

在由TTB.D组成的差动放大电路中,二极管D1用于V的温度补偿。因为整个电路的电压增益基本上由这个级电路决定,所以增加了把差动输出转换成单极的电流密勒电路。

输出级是推挽式射极输出器,靠二极管D2和D3产生基极偏压。所以即便在低负载阻抗的条件下也具备驱动能力,并能减少波形失真。

元件的选择

在多极放大电路中,初级的噪声特性决定了整个电路S/N的大小,因此要选用低噪声的元件。TT1~TT0选用互导GM大的低噪声FET(2SK68A)。

FET外围电阻可选用金属电阻,而不要选用炭膜电阻或实心电阻。C1对电路的低频特性决定作用,频率越低,要求容量越大。如果可能,应选用钽电容。在电压增益要求不高的情况下,R6可直接接地。由于输出级是推挽电路,在负载电阻不大的条件下也可驱动,所以TT12、TT13应选择集电极额定功耗大的三极管。发射极电阻R10及R11取负载电阻的1/10左右。

调整

由于输入级的偏流决定下一级的直流工作点,所以必须调整FET恒流电路中的源极电阻R4,该电阻应取1千欧左右,如果嫌调整麻烦,也可以将其换成2千欧的半固定电阻。

如果去掉C1,采用DC耦合,应该调整差动放大器的补偿,在两个FET的源极之间连接100欧的可变电阻,把滑动触点接在TT7的漏极上。

关键字:分立元件  低噪声  低失真  前置放大器 编辑:神话 引用地址:分立元件低噪声、低失真前置放大器

上一篇:用于高阻抗电路的低失真、低噪声放大器
下一篇:用平衡输入电路抑制共模噪声的话筒放大器

推荐阅读最新更新时间:2023-10-12 20:51

基站对高集成度低噪声放大器的要求
  随着无线宽带系统的频率带宽越来越宽,基站性能的要求也越来越高。低噪放,作为基站塔放中的关键器件之一,它不仅影响基站的覆盖范围,而且也决定了其他邻近基站的发射功率和杂散要求。安华高的高集成度低噪放,例如MGA-63X系列,具有好的噪声系数和线性度,完全可以满足此类基站的要求。   目前,一个基站的站点通常需要安放多个无线发射器。共享站点的方式,一来可以降低同一区域的基站站点数量,二来可以降低各种服务成本。为满足这两个要求,基站的接收链路需具有如下两个特点:高接收灵敏度和高带内/带外杂散的抑制能力。   接收灵敏度用来表示接收器的弱信号接收能力。具体公式如下:      其中BW是指信
[电源管理]
基站对高集成度<font color='red'>低噪声</font>放大器的要求
技术文章—STOP功能在低噪声数据采集应用中的优势
电磁噪声是指任何一种多余的电磁能量,其强度足以使信号失真。因此,设计高性能数据采集应用或任何具有特别敏感信号路径的系统时,必须克服噪声问题。 在电源方面,由于其基本的工作原理,高效的DC/DC转换器可能成为重要的噪声源。它们既会在转换器的开关频率处产生低频纹波,也会产生因转换器功率级中电压和电流的快速切换而引起的高频噪声。 与开关式稳压器结合使用的降噪技术示例包括额外的过滤无源元件,诸如缓冲电路、铁氧体磁珠和馈通电容器,或在电源路径中包含线性电源,如低压差稳压器。虽然这些方案在大多数应用中都能很好地发挥作用,但它们在效率、解决方案尺寸以及总电源解决方案的成本方面可能会有所权衡,尤其是在如患者监护仪、智能仪表、智能传感器和物
[电源管理]
技术文章—STOP功能在<font color='red'>低噪声</font>数据采集应用中的优势
对电压参考进行滤波以获得低噪声性能
输出电压相对于电压参考的短期变化即为噪声。参考电压噪声一般发生在以下两个频段:短期噪声在0.1Hz"10Hz,宽带噪声在10Hz"1kHz。由于噪声电压一般与参考电压成正比,故常用每百万分之一 (ppm) 来表示噪声,并借此使每百万分之一值恒定。能隙(或带隙)电压参考具有介于3ppm"16ppm之间的噪声电压,但埋入式齐纳电压参考的噪声更低,介于0.1ppm"0.5ppm之间。噪声随参考电流的增加而减小,但增加参考电流并不是大多数电压参考的选项。因此,改进噪声性能的有效途径是采用外部噪声滤波器。滤波器可有效地减少噪声:噪声带宽减少100倍可使噪声减少10倍。   图1a所示电路给出了一种典型的电压参考滤波器,其中负载电流流过R1,在
[电源管理]
美国国家半导体200V音频功率放大器驱动器可取代25颗以上分立元件
这款单芯片驱动器内置Baker补偿性钳位电路,可将音频系统的失真减至最少,最适用于高端电子消费产品及专业级音响设备 二零零七年七月二十六日-- 中国讯 -- 美国国家半导体(National Semiconductor Corporation)(美国纽约证券交易所上市代号:NSM)宣布推出200V功率放大器输出级驱动器系列的另一新型号。这款型号为LME49810的200V单芯片驱动器内置Baker补偿性钳位电路,可以执行许多分立元件的功能,使高功率音频放大器可以减省超过25颗分立元件。LME49810芯片属于美国国家半导体高性能音频芯片系列的其中一款产品,是继LM4702立体声驱动器推出之后的最新型号。与此同时,美国国家半导体在
[新品]
低噪声放大器在手机GPS上的设计及应用前景分析
最近有消息称:诺基亚高调宣布为其智能手机推出了Ovi地图新版本,将包括高端的步行和驾驶导航。此举被视为对GPS手机导航产业以及GPS导航相关产业影响巨大的变革。随着手机性能的普遍提升,以及手机GPS接收机独特问题的解决,GPS功能已不再是高端手机独享的配置,正在向普通手机标配发展。 GPS功能简介 GPS全称为全球定位系统,由24颗卫星分布在6个不同高度的轨道上,按功能分有导航和定位两个;按应用分军用和民用。其中军用频率在1.227GHz ,由美国军方独占,用途主要用于武器制导,侦查等军事和战争用途,精度高。民用频率在1.575GHz,供全球免费使用,用途主要用于海航,自然科学领域,更广泛的是我们熟悉的汽车行驶导航等。
[模拟电子]
<font color='red'>低噪声</font>放大器在手机GPS上的设计及应用前景分析
凌力尔特推出高压、低噪声、低压差电压线性稳压器 LT3066
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 2016 年 1 月 12 日 凌力尔特公司 (Linear Technology Corporation) 推出高压、低噪声、低压差电压线性稳压器 LT3066,该器件提供精准的可编程电流限制、主动放电和电源良好标记功能,并改进了电源抑制比 (PSRR) 能力。LT3066 在满负载时提供高达 500mA 的输出电流,压差电压为 300mV。该器件包含一个内部下拉 NMOS,如果 SHDN 引脚为低电平或输入电压关断,该下拉 NMOS 就给输出电压放电。在诸如高端成像传感器等启动和停机时需要电源调理的应用中,这种快速主动的输出放电有助于保护负载。
[电源管理]
凌力尔特推出高压、<font color='red'>低噪声</font>、低压差电压线性稳压器 LT3066
低失真、完全差分射频/中频放大器AD8351S
AD8351S是一款完全差分放大器,可用在通信接收机中,以中频频率驱动高分辨率(10-14位)/高速ADC (240 MSPS)。 AD8351S简化了ADC驱动,用户可以通过一个外部电阻调整增益(最高26 dB),同时集成了输出共模调整电路,以降低输入ADC中的驱动电平。 AD8351S是极低失真增益级,同时具有低噪声和宽增益带宽特性,因而非常适合数字通信中频接收机使用。 关于驱动12/14位分辨率ADC以及用该器件进行单端至差分信号转换的详细电路信息,参见AD8351S产品数据手册。 AD8351S采用先进的硅双极性工艺制造,采用3 V或5 V单电源供电,额定温度范围为–55ºC至+125ºC。
[模拟电子]
<font color='red'>低失真</font>、完全差分射频/中频放大器AD8351S
设计一个低成本的低失真受控振荡器电路
  函数发生器经常在设计、测试以及使用编码器、调制器、解调器和测量仪器的过程中起到至关重要的作用。本文介绍如何用一种低成本的方法,来构造一个失真很少、由总线控制的正弦波振荡器。   该电路产生一个正弦输出,其典型的二次和三次谐波在10Hz到10kHz的全输出范围内,分别比基频信号低-76.1dB和-74.2 dB。这个正弦波振荡器的性能比利用二极管整形技术将方波转换为正弦波的普通二极管整形正弦发生器的性能高40dB。通常情况下,二极管整形正弦发生器的二次或三次谐波分别比基频低-35dB和-25.5dB。   这个电路由四部分组成(如图所示)。设计的核心,也即第一部分是振荡器,包括双重
[模拟电子]
小广播
热门活动
换一批
更多
最新模拟电子文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved