模式识别在压力容器声发射检测中的应用

最新更新时间:2013-11-27来源: 互联网关键字:模式识别  压力容器  声发射 手机看文章 扫描二维码
随时随地手机看文章

模式识别在压力容器声发射检测中的应用

本文针对声发射信号全波形采集技术和仪器的发展,提出了声发射源的定性问题。通过声发射信号的小波分析提取特征,并将特征参数输入人工神经网络进行非线性映射,达到识别声源的目的。实际检验结果表明,这种方法可以成功地将裂纹扩展信号、保温层磨擦信号及其它信号区别开来,同时通过波形分析技术,可以得到更高的定位精度。

    大型容器的声发射检测技术已日臻成熟,尤其是在大型球罐和卧罐上的应用[1]-[3]。人们做了大量的实验研究及现场测试工作,并制定了检测过程和结果评价的国家标准(GB/T18182)和行业标准[4]。这为声发射技术的推广、普及奠定了基础。在常规无损检测技术的配合下实现经济、快速、简便和针对性极强的缺陷识别和安全性评价,这给我们检验工作带来了极大的方便。但传统的声发射仪是基于声发射特征参数的检测,不可避免地丢失了原始声发射源特性的大量信息,尤其是关于声源特征的关键信息,所以难以对声发射源的特性进行判别。
  
    1 声发射源的模式识别
    由于全波形采集功能的实现,声发射信号的模式识别技术从常规信号参数识别正逐步向波形分析、谱分析、小波分析及人工神经网络识别等先进信号处理技术的方向发展。特别是小波变换较FFT更适合于短数据序列瞬态信号的表征,提供更高的频率分辨率。人工神经网络模式识别对数据数量多、特征复杂的信号可提供各种非线性映射。本文使用仪器的模式识别正是采用小波变换提取声发射信号的特征,特征参数输入人工神经网络进行类型的识别。
    -------------由于标准样本库的样本种类所限,本实验将声发射信号识别为三种类型:1)保温层磨擦信号;2)裂纹扩展信号;3)其它信号。
    保温层磨擦的样本信号是在10%~50%最高试验压力加压过程中,现场测定的信号作为保温层磨擦信号。因为背景噪声通过调节触发电平值绝大部分被过滤掉,此加压过程中出现的信号绝大部分为磨擦信号,通过大量样本的网络训练,可以认为此时采集的信号为保温层磨擦信号。裂纹扩展的样本信号是以往多次声发射检验获取的信号,并经过射线复验确为裂纹的信号,选作为裂纹扩展的训练样本信号。图1~2为保温层磨擦信号的分析图谱,图3~4为裂纹扩展信号的分析图谱。在模式识别时,本实验选用的置信度为85%,即当神经网络输出的结果为磨擦信号或裂纹扩展信号的可能性值超过85%时,才认为是该信号,否则认为是其它信号。
    2.1 基本概况
    我们对某乙烯厂一带保温层球罐进行了全波形的声发射信号检测和实时定位。
    受检球罐的基本参数如下:
    设计压力:2.1MPa,设计壁厚36/38mm。设计温度:-450C~650C 
    工作介质:乙烯。主体材质:LT-50,球罐直径:F12300mm,容积:1000m3
    此球罐为首次开罐检验,保温材料为一次性灌注的聚氨脂发泡塑料。
    由于是带保温层的球罐,在加压过程中,会因球罐的膨胀,罐体与保温层产生摩擦,很容易产生大量声发射信号。这要求我们提高各通道的灵敏度,但最终会导致复检的声发射源数据大大增加,需要用户打开大量的保温层,这也就减少了声发射检测的优越性,增加了检验费用和检验工期。所以进行声发射信号的模式识别显得非常必要,尤其对这种带保温层的压力容器。
    2.2检验过程
    声发射各通道灵敏度要求、背景噪声测量及加载程序按GB/T18182《金属压力容器声发射检测及结果评价方法》进行。因为带保温层压力容器的检测灵敏度相对较低,在开始试验前,应仔细测量衰减曲线,以确定在所设定的灵敏度条件下各传感器间的最大间距。按设计好的间距布置好探头后,再对每个探头进行标定,并保证所有探头的平均灵敏度,相差不超过±4dB。若相差较大,可通过检查探头的耦合情况和微调增益来达到灵敏度的一致。探头的灵敏度会影响声源的定位精度,尤其是两个定位三角形(球面三角形定位)[5]的相邻边界处,探头的耦合情况会影响定位组的选择和声源距离的计算。由于保温层的存在,我们无法进行声源的反标定,所以应对每个定位组进行模拟声源的定位情况测定,从定位的计算原理可知,定位三角形靠中央部分计算出的结果较为可靠,而三角形的顶点和边界部分时差相对误差较大,计算易出现发散。我们可以在进行探头灵敏度标定的同时,进行定位组的定位情况测定。将整个标定过程的波形全部采集存盘,逐个分析每个探头的波形特征,就可以很容易知道每个探头的灵敏度情况和定位偏差产生的原因。根据不同的波形(柔性波和扩展波)[6]选用不同的波速和门槛值,可得到十分精确的定位。
    为了减少保温层磨擦信号的影响,本实验特别注意对保压时的信号采集,增加了保压的时间。一般保压台阶的保压时间不少于15min,达到最高试验压力时,保压30min。检验结果分析时,同样要按国家标准对声发射源的强度和活度进行分级,最终确定声源的严重性级别。
    2.3 信号的采集及识别
    50%最高试验压力以后的加载过程,我们作为正式的声发射信号的波形数据采集,并进行实时源定位,此时的定位并非最准确的定位,只表示声源信号的大概位置,较为精确的定位在事后处理中进行,主要目的是不影响系统的实时采集能力。事后我们可以对采集到的声发射波形特征进行仔细分析,选择合适的门槛值,即选择合适的特征到达时间和不同波的波速,实现较高精度的球面定位。对于有意义的声发射信号(按GB/T18182需要复验的信号),我们进行小波提取特征,送入前述训练好的人工神经网络进行三种模式的识别。在现场检验数据中,发现一声发射信号识别为裂纹扩展信号,其置信度为91%。多处严重性级别为C、D级的声发射信号识别为保温层磨擦信号。
    2.4 复检结果
    根据仪器的模式识别结果,我们先对置信度为91%的裂纹扩展信号源处进行表面磁粉检验和射线照像,X光底片的影像显示为裂纹类缺陷,然后对识别为保温层磨擦信号的部位进行表面磁粉和射线检验,均未发现缺陷。对于识别为其它信号的部位(共有4处),经复验确认,其中一个声源位于球柱支撑处(能量较大),对其余3个声源位置进行内外表面磁粉和内壁的超声波探伤,发现一处有超标缺陷,经射线复查,认为是夹渣,其余两处复检未发现可疑缺陷。未发现缺陷的两处位于球罐的顶部,由于顶部接管和平台的支撑较多,可能是这些部位发出信号。目前我们的缺陷样本库还刚刚建立,将来同样可以用波形分析的方法,能将这些伪缺陷信号一一识别出来。
    3.结论
    1)通过采用声发射信号的波形采集方法,并借助于现代信号的处理手段,使复杂条件下的压力容器声发射检测成为可能[9];
    2)通过小波变换可以看出,裂纹扩展信号和保温层摩擦信号,具有各自独特的频谱特性,借助于人工神经网络很容易将它们与其它信号区别开来。
    3)不断建立和扩充各种缺陷信号的样本库,并不断地对网络进行训练,可以逐步得到一个较为完善并有一定抗噪能力的人工神经网络,可对不同的声发射信号进行识别,最终使声发射检测技术成为一门独立的检测手段,不需常规方法进行复检。
    4)在传统参数基础上的声发射检测,通常会丢失许多有意义的信息,(如无法判定到达阈值的是柔性波,还有扩展波),也就不可避免地造成定位误差,而全波形采集系统可以根据波形的具体特征选取到达时间的阈值,提高了定位精度。
    5)对实际应用而言,典型信号样本的获取、声源的位置及传播衰减对波形的影响等问题,仍有待进一步的研究。
关键字:模式识别  压力容器  声发射 编辑:神话 引用地址:模式识别在压力容器声发射检测中的应用

上一篇:固体材料声发射技术开发应用研究
下一篇:声发射技术在飞机研制和生产中的应用

推荐阅读最新更新时间:2023-10-12 20:53

声发射技术在探测储罐底板泄漏位置中的不同应用
摘 要:对2台已发生泄漏的在用常压立式储罐进行了声发射监测,目的是找出罐底板的泄漏位置,以指导检修工作。对其中一台储罐的监测是在充水试验条件下进行的,另一台则为在渗漏过程中的在线监测,不同的监测方式均得到了较满意的检测效果,取得了有意义的实际检测经验。 关键词:声发射;监测;罐底板;泄漏 0 前言 众所周知,我国是一个石油能源消耗大国,拥有大量的各类大型立式常压储罐,且主要集中在化工、炼油及油气储运等行业。随着我国经济的快速发展,不但储罐的总数量在快速增加,而且也朝着大型化的方向发展。尤其是近年来,出于国家的安全需要,在全国建设了4个大型石油战略储备基地(其中的2个在浙江省),单台储罐的容积一般都在5-15万立方米。由于介质的性质
[模拟电子]
基于相关分析法的声发射信号降噪技术
摘 要:阐述了相关分析法在剔除声发射信号中环境噪声的基本原理。通过LF3铝合金的腐蚀实验,将未处理的声发射信号与环境中的噪声信号进行相关分析,并以它们相关系数的大小作为判断该信号是否为环境噪声信号的依据。结果表明该方法能准确地剔除信号中的环境噪声信号。 关键词:声发射;腐蚀;相关分析;降噪;环境噪声 0 引言 声发射(Acoustic Emission,简称AE)是指材料或结构受内力或外力作用产生变形或断裂,以弹性波的形式释放出应变能的一种物理现象。声发射技术是通过分析声发射信号进而提取声发射信号特征信息来推断声发射源特性的无损检测技术。当前限制这一技术进一步发展的一个关键问题是采集到的信号中含有大量的噪声信号,以致可能淹没真实的
[模拟电子]
声发射在某型飞机水平尾翼半轴状态监控中的应用
摘 要:在某型飞机水平尾翼疲劳试验中对关键构件半轴的监控,因其不可达而十分困难,本文提出了声发射技术(AE)对半轴进行监控的一些新方法。利用了同一种材料的裂纹信号AE参数具有统计特性的特点,提出了基于信号上升时间(rise time)和峰值频率(peak frequency)滤波提取裂纹信号(参数滤波)的方法,并对滤波后的信号进行分析和论证。这种方法能够准确找出裂纹的萌生时间和裂纹的生长过程及裂纹信号特性,因而具有实用价值。 关键词:声发射;水平尾翼;半轴;趋势分析;上升时间;峰值频率;参数滤波 0 前言 水平尾翼又称水平安定面或简称平尾,是飞机舵面系统的重要组成部分。由于飞机在飞行中机翼升力不可能在所有状态都能通过飞机重心,因
[模拟电子]
一种基于CPLD的声发射信号传输系统设计
  声发射技术是光纤传感技术和声发射技术相结合的产物,是目前声发射技术的发展趋势。它将高灵敏度声发射传感器安装于受力构件表面以形成一定数目的传感器阵列,实时接收和采集来自于材料缺陷的声发射信号,进而通过对这些声发射信号的识别、判断和分析来对材料损伤缺陷进行检测研究并对构件强度、损伤、寿命等进行分析和研究。   在实际的构件检测中,现场声源信号通常是在100~800 khz之间的微弱高频信号,而且材料损伤检测、声发射源定位往往需要多个传感器形成传感器阵列,而声发射信号的数据传输系统必须达到640 mbps以上的数据传输能力;并应具有应付突发或长时间数据接收和存储能力。本文就是利用CPLD来实现对声发射信号的采集,从而有效解决了
[嵌入式]
一种基于CPLD的<font color='red'>声发射</font>信号传输系统设计
声发射技术在裂纹监测中的应用
声发射技术在裂纹监测中的应用 声发射技术作为一种动态检测技术,可监测到材料内部缺陷在应力作用下的活动情况,能够提供缺陷随载荷、时间、温度等外变参量而变化的实时或连续信息,适用于工业过程在线监控或临近破坏预报;它还适于其他方法难以或不能接近环境下的监测,如高低温、核辐射、易燃、易爆及极毒环境。声发射检测的原理是声发射源弹性波经传播达到材料表面,引起可以用声发射传感器探测的表面位移,传感器将材料的机械振动转换为电信号,经放大、处理和记录,其波形或特性参数被显示记录。经数据分析与识别,评定产生声发射的机制。 在静疲劳实验,将热压SiC试样的声发射计数率的对数与时间的对数有很好的线性关系。随着受力时间的增加,所检测到试
[模拟电子]
<font color='red'>声发射</font>技术在裂纹监测中的应用
刀具破损的声发射传感监测新技术
刀具破损的声发射传感监测新技术   随着FMS、CIMS的日益广泛使用,机械加工正朝着自动化、无人化方向迅速发展,加工过程中刀具的状态监测已成为制约切削加工发展的重要因素。声发射(Acoustic Emission-AE)方法是近些年来发展起来的最有前途的监测方法之一,由于它监测的是刀具磨损和破损时产生的高频弹性应力波信号,避开了加工过程中振动和音频噪声污染严重的低频区,在所感兴趣的频率范围内灵敏度较高,抗干扰能力强,因而,在刀具切削状态的监测中得到广泛采用〔1〕〔2〕。目前,在国内外用声发射监测刀具切削状态时,大多使用接触型声发射传感器,这种传感器结构简单、成本低。不利之处是实际环境噪声干扰易造成其误判;因声发射信号在接
[模拟电子]
谭铁牛院士谈人工智能发展动态 全方位展示最新进展
   11月25日, 模式识别 与 人工智能 学科前沿研讨会在自动化所召开。会上,谭铁牛院士做“ 人工智能 新动态”报告,回顾了近代以来历次科技革命及其广泛影响,并根据科学技术发展的客观规律解释了当前 人工智能 备受关注的深层原因。报告深入分析了其当前存在的局限性和面临的瓶颈问题,整理并列举了2017年人工智能的十件大事,全方位、多维度展示了人工智能所取得的最新进展。基于对这些事件的深入分析,报告总结了人工智能未来的发展趋势和值得关注的研究方向。下面就随网络通信小编一起来了解一下相关内容吧。   以下内容由杨红明、张煦尧根据谭铁牛院士报告整理。   谭铁牛院士谈人工智能发展动态 全方位展示最新进展   在科学研究中,从方法论
[网络通信]
高通在2023年国际计算机视觉与模式识别会议上,展示先进研究成果并将生成式AI引入边缘侧
高通在2023年国际计算机视觉与模式识别会议上,展示先进研究成果并将生成式AI引入边缘侧 带来包括完全运行在终端上的ControlNet、支持基于大语言模型的数字健身教练和面向XR的3D重建的技术演示,并展示公司已被业界认可的研究论文 6月18日至22日,IEEE/CVF国际计算机视觉与模式识别会议(CVPR)在温哥华举行,该会议不仅是计算机视觉,也是AI领域最重要的年度活动之一。会议期间,高通展示了已被业界认可的研究论文和技术演示。本文将介绍CVPR 2023上高通的展示亮点。 技术演示 我们在AI、计算机视觉、XR和自动驾驶汽车等领域的研究,已从核心理论创新扩展到下游实际应用,例如: 运行在手机上的全球最快
[手机便携]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved