结构紧凑的超声成像系统连续波多普勒(CWD)设计的挑战

最新更新时间:2013-11-27来源: 互联网关键字:超声成像  多普勒  CWD 手机看文章 扫描二维码
随时随地手机看文章

结构紧凑的超声成像系统连续波多普勒(CWD)设计的挑战

摘要:采用高度集成的低功耗、双极型放大器和连续波多普勒(CWD)混频器/波束成型电路能够使下一代结构紧凑的超声设备达到“高端”CWD的指标。 


超声系统中要求最苛刻的临床诊断工具是连续波多普勒(CWD)接收器。对小尺寸、低成本的要求不得不牺牲CWD系统的灵敏度性能,通过分析当前使用的CWD接收器方案,设计人员开发出了新一代解决方案,该方案采用了已经投产的高集成度、低功耗双极型放大器和CWD混频器/波束成型芯片组。新方案能够保证CWD接收机无需折衷诊断特性。

CWD基本概念

典型的相控阵CWD架构中,64至128个超声传感器在孔径中心附近均分成两部分,一半的传感器单元用于发送器,聚焦超声CWD发射波束,另一半用于接收器,聚焦接收波束。作用在发射单元的信号是方波信号,典型频率为1.0MHz至7.5MHz多普勒频率。将适当相位的信号作用到发射单元来聚焦发射波束。同样,CWD接收信号通过对每个接收单元的信号进行相位调整、求和进行聚焦。

“波束成型”CWD接收信号由固态组织反射的强信号(通常称其为杂波)以及流动的血液反射回来的较弱的多普勒信号组成。每个相控阵接收通道输入端的典型杂波可能高达200mVP-P,而接收机参考输入的噪底会低至1nV/。为了优化接收性能,需要每通道的SNR达到大约157dBc/Hz。

对于一个64通道的CWD接收机,其SNR的要求非常极端。每个接收通道的噪声不相关,结果对于64个通道的噪底,波束成型后的信号噪底可能比单个通道的噪底高出18dB。然而每个通道的CWD是相关的,波束成型后的CWD信号会比单个通道的CWD信号高出36dB。考虑到“求和增益”的作用,波束成型后SNR的要求会比单个通道高出18dB,达到175dBc/Hz! 更加困难的是,感兴趣的低速多普勒信号的频率会在1kHz以内或低于杂波信号。由此可见超声检测设备面临巨大的设计挑战。

基于延时线的CWD波束成型

目前,超声系统大多采用模拟延时线接收器实现CWD信号检测(图1),来自超声接收单元的输入信号经过缓冲、放大,LNA提供大约20dB的增益。LNA输出被转换成电流信号,随后通过交叉开关和模拟延时线对RF频率信号进行波束成型。

图1. 基于CWD延时线的接收机简化电路
图1. 基于CWD延时线的接收机简化电路

这种架构很容易集成,因为它所需要的电压-电流转换器、模拟开关、无源延时线以及单路I/Q混频器很容易集成。通过配置交叉开关求和,适当的延时线抽头切换信号,达到每个接收器的延时要求。

波束成型后的RF CWD信号混频后得到基带I、Q音频信号,这两路信号经过带通滤波后由高分辨率ADC进行数字转换,用于数字频谱分析。RF至基带的混频处理通常是接收链路保证SNR的瓶颈,这个处理过程对CWD的性能影响较大,以64通道设计为例,I/Q RF混频器需要在处理波束成型信号时具有175dBc/Hz (1kHz频偏)的动态范围。

很难找到或设计能够达到这一指标的混频器,此外,本振驱动信号还必须保持极低的抖动。遗憾的是很难从市场上获得能够达到这样指标的逻辑器件。虽然CWD延时线波束成型器能够满足结构紧凑的超声系统的最低要求,上述性能的局限性也是亟待解决的问题。

基于混频器的CWD波束成型

为了获得更高性能,在CWD系统中引入一个CWD混频器/波束成型器,简化框图如图2所示。该架构中,每个通道都具有一个I/Q混频器,在基带端(而非RF端)进行波束成型求和;每路I/Q混频器的LO相位可以调节在n (n = 8至16相)个相位的其中之一。LO相位的变化将改变接收信号的相位,达到波束成型的目的。

图2. 低功耗双极型LNA和CWD混频器/波束成型电路能够简化高性能CWD接收机的设计
图2. 低功耗双极型LNA和CWD混频器/波束成型电路能够简化高性能CWD接收机的设计

由于混频器的实现基于每个通道,对每个通道混频器的要求可以降低到157dBc/Hz (1kHz频偏)。这一SNR指标虽然苛刻,但利用双极型混频器和标准逻辑器件可以实现。混频器输出为电流,而且在声波基带进行无源求和,可以满足CWD波束成型的SNR要求。

基于混频器的CWD波束成型方案

过去,由于缺乏适当的集成工艺,很难实现高性能的CWD波束成型架构。但目前这一问题已经得到解决,对于功耗不敏感的应用无需降低CWD和成像质量,可以使用带有可编程CWD混频器/波束成型器的集成双极型八通道VGA。图3给出了接收链路的MAX2038 VGA原理图。

图3. 由MAX2038和MAX2034构成的超声接收机的单通道简化框图。MAX2038集成了八路VGA和CWD I/Q混频器/波束成型器,MAX2034集成了四路LNA。
图3. 由MAX2038和MAX2034构成的超声接收机的单通道简化框图。MAX2038集成了八路VGA和CWD I/Q混频器/波束成型器,MAX2034集成了四路LNA。

对于功耗和空间要求苛刻的高端应用,可以选择图4所示MAX2078新款、具有更高集成度、更低功耗的解决方案。该款完全集成的八通道接收器在单芯片双极型IC中包含了:LNA、VGA、抗混叠滤波器以及完全可编程的CWD混频器/波束成型器,这些器件使得各种超声系统不再受早期延时线CWD架构的制约,能够达到出色的CWD性能。

图4. MAX2078超低功耗、八通道超声接收器,带有CWD波束成型器,器件内部集成了八个高性能、低功耗超声接收通道,每个通道包括:LNA、VGA、抗混叠滤波器以及完全可编程的I/Q混频器/波束成型器。
图4. MAX2078超低功耗、八通道超声接收器,带有CWD波束成型器,器件内部集成了八个高性能、低功耗超声接收通道,每个通道包括:LNA、VGA、抗混叠滤波器以及完全可编程的I/Q混频器/波束成型器。

构建CWD接收器的另外一个潜在问题是LNA放大器的SNR指标,为了降低功耗、减小尺寸,许多超声设计人员选择了CMOS LNA,这样的器件可能适合某些能够控制CWD性能的应用。利用几何尺寸低于0.35µm的CMOS工艺制作放大器时需要特别注意这个问题,在如此小尺寸的制造工艺中生产出的电路往往具有较大的1/f噪声,1/f噪声会引起LNA增益的低频调制,这是一个极其负面的影响。

较强的RF CWD杂波通过这种LNA时将产生较大的低频调制噪声,从而降低SNR指标和CWD检测灵敏度。因此,为了满足高性能的应用需求,应选择类似于MAX2034 4通道超声LNA的低功耗双极型放大器。
关键字:超声成像  多普勒  CWD 编辑:神话 引用地址:结构紧凑的超声成像系统连续波多普勒(CWD)设计的挑战

上一篇:耗电不到10µA、带有逻辑输出的微型光传感器
下一篇:压力传感器实用放大电路图

推荐阅读最新更新时间:2023-10-12 20:53

如何用DSP和FPGA构建多普勒测量系统
  随着FPGA性能和容量的改进,使用FPGA执行DSP功能的做法变得越来越普遍。   许多情况下,可在同一应用中同时使用处理器和FPGA,采用协处理架构,让FPGA执行预处理或后处理操作,以加快处理速度。   传统上,大量的应用设计使用专门的数字信号处理(DSP)芯片或专用标准产品(ASSP)并通过信号处理算法来处理数字信息,滤波、视频处理、编码与解码、以及音频处理等仅仅是众多采用 DSP 的应用中的一部分而已。   现在,随着FPGA性能和容量的改进,以及可以在大多数DSP应用中看到的通用算术运算的效率的提高,使用FPGA执行DSP功能的做法变得越来越普遍。   在许多情况下,同一应用中同时使用处
[嵌入式]
如何用DSP和FPGA构建<font color='red'>多普勒</font>测量系统
新方法可提高甲状腺超声弹性成像诊断能力
超声弹性成像目前已经能够妥善的应用于乳腺成像检查,而甲状腺是超声弹性成像未来需要进一步研究的领域。在上周举行的美国超声医学会(AIUM)会议中,波兰研究人员公布了一项新的超声弹性成像数据分析方法,可以提高甲状腺结节的诊断效果。 弹性成像往往是基于恶性肿瘤以线性方式发生变形。但大多数软组织不以线性的方式变形,这种差异需要新的方法来查询数据。 研究人员发现,一种非线性方法能显著增强甲状腺弹性表现。波兰华沙医科大学拉法尔博士领导的一个小组发现甲状腺弹性时间 - 应变曲线,分析以100%的敏感性和85%特异性的甲状腺结节为特征,是传统的的弹性图像分析方法的一大改进。 “线性和非线性弹性数据的分析,可以大大提高甲状腺结节的鉴别诊断。”Sla
[医疗电子]
基于DSP和FPGA构成多普勒测量系统
随着FPGA性能和容量的改进,使用FPGA执行DSP功能的做法变得越来越普遍。在许多情况下,同一应用中同时使用处理器和FPGA,采用协处理架构,让FPGA执行预处理或后处理操作,以加快处理速度。本文说明如何将FPGA和与固定功能DSP结合起来使用,设计一个基于多普勒测量原理的非侵入式测量系统。 图1:电子束聚集技术。 传统上,大量的应用设计使用专门的数字信号处理(DSP)芯片或专用标准产品(ASSP)并通过信号处理算法来处理数字信息,滤波、视频处理、编码与解码、以及音频处理等仅仅是众多采用 DSP 的应用中的一部分而已。 现在,随着 FPGA 性能和容量的改进,以及可以在大多数
[嵌入式]
基于DSP和FPGA构成<font color='red'>多普勒</font>测量系统
浙大研究团队突破超声对颅脑成像的“禁区”
日前,浙江大学生物 医学 工程与仪器科学学院郑音飞副教授课题组创新性地提出一种基于超声超材料和平面波造影相结合的新型脑成像技术——穿颅超声脑成像。这一技术突破了超声对颅脑成像的“禁区”,使得人类颅脑超声成像成为一种可能,为人类颅脑成像提供了一种新的方向。 据介绍,现代医学超声设备通过分析由身体反射的回波信号来判断人体组织结构和血流情况,相较CT与核磁共振成像,超声成像的优势在于实时、无损、低价,且能在术中使用。然而长久以来,由于颅骨具有高密度特性,对超声具有极强的衰减和畸变效应,因此常规的超声很难检测到由颅脑反射的回波信息。 提高现代超声设备的穿透性能,是超声颅脑成像的关键性难题。郑音飞课题组提出的技术结合了声学等互补介质理论和波
[医疗电子]
超声成像系统连续波多普勒设计的挑战
摘要: 连续波多普勒(CWD)接收器新一代解决方案采用了已经投产的高集成度、双极型放大器和CWD混频器/波束成型芯片组。新方案能够保证CWD接收机无法做出妥协的诊断特性。采用双极型放大器和CWD混频器波束成型电路能够使系统达到“高端”CWD的指标,在下一代结构紧凑的超声设备中有效改善诊断工具的性能。 典型的相控阵CWD(连续波多普勒)架构中,超声传感器的聚焦孔径分成两部分,一半的(64至128个)传感器单元用于发送器,另一半用于接收器。作用在发射单元的信号是方波信号,典型频率为2.0 MHz至7.5 MHz多普勒频率。发射单元通过发送适当相位的信号聚焦发射波束。同样,CWD接收信号通过对每个接收单元的信号进行相位
[医疗电子]
基于FPGA的多普勒测振计信号采集系统的设计方案
针对遥感系统的工作环境特点、待处理信号的频谱特征以及系统信噪比等要求,综合比较多种信号采集系统方案的优缺点,本文提出了一种基于FPGA的激光多普勒测振计信号采集与处理系统的设计方案,该方案可以实现光声浅海地形遥感探测中的水声信号的实时采集与处理。 1 系统总体结构 激光多普勒测振计信号采集与处理系统要求既要具有高速实时的采集和处理能力,也要具有丰富的外部接口,同时,考虑到系统稳定性和灵活性的要求,采用核心板和底层板结合的硬件结构。系统原理框图如图1所示,FPGA 芯片采用Atera 公司的Cyclone Ⅱ 系列EP2C5Q208C8N,它采用90 nm 工艺,具有4 608个逻辑单元。此外,系统还包括信号调理模块、A
[电源管理]
基于FPGA的<font color='red'>多普勒</font>测振计信号采集系统的设计方案
混凝土超声成像检测仪的设计与实现
摘要:设计了一种多通道、高精度混凝土超声成像检测仪。该检测仪器通过高速、高精度数据采集卡同时采集多路经过混凝土的超声信号,根据各路信号的声时值,给出混凝土结构的内部层析成像结果。检测中给出的试验结果很好地显示了试件的内部结构。实验结果表明:该检测系统可有效用于混凝土结构物的安全监测和质量评价。 1 引言 超声波检测仪是混凝土无损检测中必备的装置,该仪器通过检测超声波在混凝土中的走时、首波幅度和主频等参数来推导混凝土内部的结构、缺陷、强度,进而评价被测混凝土的安全运行期和使用寿命。为混凝土无损检测提供一种科学、直观的检测手段。 纵观目前国内外大量使用的混凝土超声检测设备,其采样位数一般为8位,采样频率最大2
[测试测量]
混凝土<font color='red'>超声</font><font color='red'>成像</font>检测仪的设计与实现
基于多普勒原理的血流速度计设计
血流速度,是指红细胞在血管中的流动速度,它是一个非常重要的生理参数,能够反映很多机体功能,如心脏功能、血液循环系统功能及人体新陈代谢水平等;因此人体血液速度的检测在临床诊断、手术监护等方面都具有重大的生理意义和临床价值。它还可有助于诊断血管类疾病,如人体外周血管硬化、狭窄、阻塞、斑块的评估,判断断肢再植和烧伤病人的血管完好性等许多方面都具有重要的临床应用价值,是临床上不可或缺的重要的诊断手段之一。 笔者设计了一个可以快速准确测量血流速度的系统,通过单片机将下位机测量的数据通过串口传输到电脑,可以在电脑上非常直观的看到血流速度的变化曲线,并且得到准确的流量。基于AT89S52单片机的血流测量系统,可以扩展血压测量模块、脉搏测量模块,
[单片机]
基于<font color='red'>多普勒</font>原理的血流速度计设计
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved