KJ005可控硅移相触发器外电路接线图

最新更新时间:2014-01-03来源: 互联网关键字:KJ005  可控硅  移相触发器 手机看文章 扫描二维码
随时随地手机看文章

KJ005是KJ006的一种特殊情况。没有白生电源,不能直接用于交流供电的场合。该器件主要适用于双向可控硅或反并联可控硅线路的交流相位控制。需外加同步信号和外接直流工作电源。具有锯齿波线性好、移相范围宽、控制方式简单、有交互保护、输出电流大等优点。是交流调光、调压的理想器件。同样也适用于半控或全控桥式线路的相位控制。电参数如下:电源电压:外接直流电压+15V,允许波动±5%(±10%功能正常)。电源电流:≤l2mA。同步电压:≥l0V。同步输入端允许最大同步电流:6mA(有效值)。移相范围:≥l70°(同步电压220V,同步输入电阻51kΩ)。移相输入端偏置电流≤l0μA。锯齿波幅度:≥7~8.5V。输出脉冲: a.脉冲宽度:l00μs~2ms(通过改变脉宽阻容元件达到)。 b.脉冲幅度:>13V(电源电压l5V时)。 c.最大输出能力:l00mA(吸收脉冲电流)。 d.输出反压:BVceo≥18V(测试条件:Ie≤l00μA)。正负半周脉冲相位不均衡度≤±3°。 KJ005采用双列直插l6脚封装,如下图所示。

KJ005采用双列直插l6脚封装

对不同的电网电压,KJ005电路同步限流电阻Rl的选择按下式计算:KJ005外电路接线图:

KJ005可控硅移相触发器外电路接线图  www.elecfans.com

关键字:KJ005  可控硅  移相触发器 编辑:神话 引用地址:KJ005可控硅移相触发器外电路接线图

上一篇:KJ001典型应用电路图
下一篇:KJ009组成的可控硅过零触发器应用电路图

推荐阅读最新更新时间:2023-10-13 10:59

KJ005可控硅移相触发器外电路接线图
KJ005是KJ006的一种特殊情况。没有白生电源,不能直接用于交流供电的场合。该器件主要适用于双向可控硅或反并联可控硅线路的交流相位控制。需外加同步信号和外接直流工作电源。具有锯齿波线性好、移相范围宽、控制方式简单、有交互保护、输出电流大等优点。是交流调光、调压的理想器件。同样也适用于半控或全控桥式线路的相位控制。电参数如下:电源电压:外接直流电压+15V,允许波动±5%(±10%功能正常)。电源电流:≤l2mA。同步电压:≥l0V。同步输入端允许最大同步电流:6mA(有效值)。移相范围:≥l70°(同步电压220V,同步输入电阻51kΩ)。移相输入端偏置电流≤l0μA。锯齿波幅度:≥7~8.5V。输出脉冲: a.脉冲宽度:l0
[电源管理]
<font color='red'>KJ005</font><font color='red'>可控硅</font><font color='red'>移相</font><font color='red'>触发器</font>外电路接线图
功率因数校正 宽工作电压范围的可控硅整流器模块
TDK 集团最近推出了新型爱普科斯 (EPCOS) TSM-LC-NC690 可控硅整流器模块。新的模块 工作电压范围进一步扩展,可用于电压可高达 690 V AC 的功率因数校正 (PFC)。该模块可执 行电容器的 2 相切换功能,因此无需中性导体。此外,该新型模块专为无功功率为 40 kvar 至75 kvar(取决于工作电压)的应用而设计,其切换电流可高达 60 A。 该模块可持续监控电压、相位及自身温度,性能极为可靠。和其它所有爱普科斯 (EPCOS) 可 控硅整流器模块,TSM-LC-NC690 不仅可实现无噪声、无磨损的快速(切换时间仅为 5 ms) 切换,无需维护,还可电流过零时进行切换,从而延长电容器的使用寿命
[新品]
里阳半导体可控硅LTH16-08可用于电热毯中的温度控制器
电热毯在加温电路中的负载可能是加热管或者是加热棒、加热丝等,因此双向可控硅在加温电路中起到的是调压调温作用。可控硅电热毯温控器,它可以把电热毯的温度控制在一个适宜的范围内,本文推荐使用里阳半导体可控硅LTH16-08应用于电热毯中的温度控制器。 以上是温度控制器中的可控硅调压调温电路,工作原理:R、RP、C、D 组成脉冲形成网络触发双向可控硅VT, 使VT在市电正负半周均保持相应正反向导通。改变可调电位器RP的阻值,即可增大或减小VT的导通角,使负载RL输出电压升高或降低,从而起到调压调温的目的,控制非常方便。 可控硅LTH16-08是一种具有三个PN结、四层结构的大功率半导体器件,具有体积小、结构相对简单、功能强、重量轻
[嵌入式]
里阳半导体<font color='red'>可控硅</font>LTH16-08可用于电热毯中的温度控制器
双向可控硅噪声抑制的基本原理和新的低成本的dV/dt性能改进
从上个世纪70年代开始,双向可控硅(又称三端双向晶闸管)一直用于控制交流负载,几乎在所有电器上都能看到双向可控硅。当终端设备上的电压上升速率过快时,双向可控硅将会自动触发,从那时起,设计人员就必须面对双向可控硅的这个特性。当设计对电压快速瞬变有要求的电器时,必须考虑这个问题。 半导体易受到dV/dt变化速率的影响 功率半导体器件由多个半导体层组成。例如,双向可控硅是四层结构交流开关元件,每层是半个祼片,每层通过交替掺杂方法控制空穴浓度(P区)或自由电子浓度(N区),形成两个单向可控硅。因此,双向可控硅相当于两个反极性并联的单向可控硅(图 1)。 每个PN结都会产生寄生电容,当施加斜坡电压时,就会产生电容电流(
[电源管理]
双向<font color='red'>可控硅</font>噪声抑制的基本原理和新的低成本的dV/dt性能改进
基于PWM的可控硅非线性调光LED驱动电路
引言   近年来,高亮度LED照明以高光效、长寿命、高可靠性和无污染等优点正在逐步取代白炽灯、荧光灯等传统光源。在一些应用中,希望在某些情况下可调节灯光的亮度,以便进一步节能和提供舒适的照明。常见的调光有双向可控硅调光、后沿调光、ON/OFF调光、遥控调光等。可控硅调光器在传统的白炽灯等调光照明应用已久,且不用改变接线,装置成本较低,各品牌可控硅调光器的性能和规格相差不大,但是其直接应用在LED驱动场合还存在着一系列问题。    1 双向可控硅TRIAC调光原理   市面上大多数可控硅调光器基本结构如图1所示,其工作原理如下:当交流电压加双向可控硅TRIAC两端时,由于Rt、Ct组成的RC充电电路有一个充
[电源管理]
基于PWM的<font color='red'>可控硅</font>非线性调光LED驱动电路
大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别
一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:  (1-1) 由公式(1-1)可得以下结论: 电流中含6K±1(k为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后
[电源管理]
大功率UPS 6脉冲与12脉冲<font color='red'>可控硅</font>整流器原理与区别
如何用万用表测量可控硅
可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成(见图1)。即其中一只单向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。 1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10
[模拟电子]
可控硅数字相位控制电路TC790A及其应用
0 引言 三相可控硅触发电路需要对三相电进行同步采样,因而需要同步变压器,同时考虑到主回路的接法,还要注意同步变压器的相应接入。且不说同步变压器对钢和铜的消耗,就是6个绕组的绕制和接入也是很麻烦的。若在安装时出错,系统工作就会不正常。 众所周知,50 Hz三相电的三相位互差120°,那么,能不能只对一相电进行同步采样来获得三相电信号,从而产生6路移相触发脉冲呢?实际上,答案是肯定的。而且这样将省去沉重的同步变压器,电路也将更加绿色环保和简洁,控制精度也能得到提高,而且系统接入十分方便。 1 TC790A的主要特点 TC790A是一种单同步三相数字触发电路,适用于三相半控全控桥可控硅整流触发和三相交流调压反并
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved