滞环PWM电流控制是一种较为传统PWM电流控制方法[4],具有稳定性好,响应速度快,误差可控等优点。其系统结构如图2,系统相轨迹如图3。
关键字:滞环PWM 电流控制 轨迹电路
编辑:神话 引用地址:滞环PWM电流控制系统相轨迹电路图
图2 滞环PWM电流控制系统结构电路图
图3 滞环PWM电流控制系统相轨迹电路图
从相轨迹可以看出,相平面上存在一个稳定的极限环,不论系统初始状态如何,经过一次开关转换过程,相轨迹都会收敛于极限环,因此,滞环PWM控制具有非常好的稳定性和快速性。
滞环PWM控制系统的开关周期同滞环宽度直接相关,并同系统主电路参数L、C、R及输入、输出电压密切相关,为了得到开关周期同这些量间的解析关系,需要对实际系统进行简化,并作出合理化假设。
在实际系统中,滤波电容C的值往往都比较大,以保证较小的输出电压纹波,因此可以假设其两端电压uo在一个开关周期内是不变的,同时也可以假定输入电压的值在一个开关周期内是不变的,这样电感L的电流iL的波形就只由输入、输出电压和导通、关断时间决定。
上一篇:准固定频率滞环控制系统结构电路图
下一篇:滞环PWM电流控制系统结构电路图
推荐阅读最新更新时间:2023-10-13 11:01
汽车控制系统中螺线管的电流检测
螺线管是一种具有固定运转范围的线性电动机。螺线管适合于简单的开关应用,其作用很像继电器。例如,它们在起动器和门锁中就起到这种作用。
另一方面,线性或成比例的螺线管可以用很精确的方式控制其状态。它们在诸如变速器和燃油喷射等应用中用于操纵活塞或者阀门以便准确地控制液体压力或流量。
变速器需要准确平稳地控制离合器上的压力以改变传动装置,并用于控制闭锁液力变矩器。电子控制的变速器可能包括8个以上的线性螺线管,它们都需要平稳准确地控制。对于共轨柴油机燃油喷射应用,具有超过2000
psi(每平方英尺磅数)的压力,可能每个气缸都需要一个线性螺线管——并且燃料泵需要一个螺线管——以便准确地调整压力,保
[嵌入式]
无刷电机电流控制方法
根据驱动系统的不同,无刷电机具有不同的电流控制方法。此外,为了控制转速和产生的扭矩,需要控制电机电流的大小。在这里,我们将解释控制电机电流的 PWM 方法。 电流控制方式 称为PWM(脉冲宽度调制)的电气控制系统用作施加到电机绕组的电压的控制方法。PWM 控制是一种通过反复打开和关闭电路中的开关元件并产生脉冲状电压来控制输出电压的方法。 图 3.12 显示了直流电机的 PWM 控制电路模型。图 3.13 显示了 ON 阶段脉冲宽度变化(调制)时的电压波形和电流波形。 调制脉冲宽度并改变 ON/OFF 开关元件的占空比可控制平均电压。 此时,电感使电流滞后于增加的电压,当取消施加电压时,电流逐渐减小。 3.31调制方
[嵌入式]
开关电源的冲击电流控制方法
1. 引言 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击
[电源管理]
电流型控制的开关电源系统
电流型控制的开关电源系统有三种控制方式:即峰值电流控制、平均电流控制和滞环电流控制。图1所示即为电流型控制的开关电源系统结构框图。它包含有两个负反馈控制环:内环是电流环,外环是电压环。电压控制器的输出控制信号ue作为电流环的给定信号;电流环由电流检测(如直流电流互感器)、处理(I-U转换)和电流控制器等组成;被检测的电流可以是电感电流iL,也可以是主开关管的电流iv,通过电流检测电阻Ri,将检测到的电流(iL或iv)转换成电压iLRi或ivRi,然后再与电流给定信号ue进行比较,并将得到的误差信号经过电流控制器放大之后,通过PWM脉冲调制器进行调制,产生出占空比d去控制开关转换器的主开关管V的通/断。为了介绍简单,本文只介绍连
[电源管理]
高端电流检测放大器简化电流的监视和控制
在高端进行测量
在理想的电路中,电流的测量是在不中断电流通路的情况下进行的。例如,可采用一个电磁式拾波器来检测电流,只可惜磁性传感器的准确度欠佳。因此,电流检测电路通常在电流通路中布设一个电阻器,并采用一个放大器来测量该电阻器两端的电压降。
图1 采用一个精准差分放大器的高端电流检测
此项工作看似微不足道,可等到您考虑电流检测电阻器的布设位置时就会恍然大悟,实际情况原来并非如此!按照接地回线来布设电阻器(被称为“低端电流检测”)会带来不少难题。举例来说,负载将不再具有一个可靠的接地线路;当电流发生变化时,您的电路的“相对地”将随之改变。一个变动的“地”会使用于充电或电源管理电路的信号产生误
[模拟电子]
电流检测与控制信号产生电路
将图1中的三相不控整流器换为可控变流器,并在三相电源输入端串入三个高频扼流电抗器,用以抑制可能产生的双向(电网伺服系统)电磁干扰,以及在变流器工作于逆变状态时,起到等效直流电抗器的作用,如图2所示。
当电动机工作在电动状态时,可控变流器的大功率开关器件S1~S6全部处于关断状态,而6个续流二极管构成三相不控桥式整流器,工作状况同图1。
当电动机工作在发电状态时,则逆变器工作于整流状态,而可控变流器工作于逆变状态,使电动机工作在再生制动状态。这时滤波电容贮能,直流母线电压升高,在超过电网线电压值后,二极管D1~D6反向阻断;当直流母线电压继续升高,超过设定的上限允许值UdH时,变流器开始工作,将直流母线上的能量逆变回馈
[模拟电子]
电流模式控制DC/DC转换器中的电流检测电路设计
电流检测电路是电流模式控制所必需的, 通过检测功率开关管上的电流, 然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差放大器的输出进行比较, 从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种, 一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法, 又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性, 而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。
1 反馈控制电流源的原理
电路原理图及
[电源管理]
利用智能MOSFET驱动器提升数字控制电源性能
在电源系统中,MOSFET驱动器一般仅用于将PWM控制IC的输出信号转换为高速的大电流信号,以便以最快的速度打开和关闭MOSFET。由于驱动器IC与MOSFET的位置相邻,所以就需要增加智能保护功能以增强电源的可靠性。
UCD9110或UCD9501等新上市的数字电源控制器需要具备新型的智能型集成MOSFET驱动器的支持。电源设计人员仍然对数字电源控制技术心存疑虑。他们经常将PC的蓝屏现象归咎于软件冲突。当然,这种争议会阻碍数字控制电源以及查找控制器故障期间功率级保护策略的推广。这推动了不依赖数字电源控制器信号的具备功率级内部保护功能的MOSFET驱动器的发展。
图1
[应用]