推荐阅读最新更新时间:2023-10-13 11:01
一种新型ZCS-PWM Buck变换器研究
1 引 言 与功率场效应管(MOSFET)相比,绝缘栅双极晶体管(IGBT)具有更高的耐压值、更大的能量密度和较低的开通损耗,因此己广泛用于高压、大功率场合。然而,IGBT的开关速度较慢,而且关断时还存在电流拖尾现象,因而会导致较大的关断损耗。解决这两个问题的有效措施是实现IGBT的零电流开关(ZCS)。为此,近几年已陆续提出了多种ZCS脉宽调制(Pulse Width Modulated,简称PWM)技术方案 。例如,文献 虽能实现所有有源开关器件的ZCS,但主开关管的电流应力很大,它将显著增加导通损耗。这一问题在文献 中得到解决,但辅助开关管的电流应力也很大。而且由于两个谐振电感分别与主开关管、辅助开关管串联,所以损耗较大,
[电源管理]
反激变换器副边同步整流控制器STSR3应用电路介绍
1 概述
本文给出ST公司2003年新推出的开关电源IC产品STSR3应用电路分析。它是反激变换器副边同步整流控制器,具有数字控制的智能IC驱动器。采用STSR3作同步整流控制芯片的反激变换器基本电路简化结构见图1。STSR3的内部功能方框见图2,其引脚排列见图3。
图1 STSR3典型应用电路简化示意图
图2 STSR3内部功能方框图
图3 STSR3各引脚排列图
STSR3智能驱动器IC可提供大电流输出,以正常地驱动副边的功率MOSFET,使之作为大电流输出的高效率反激变换器中的同步整流器。根据取自隔离变压器副边的一个同步时钟输入,IC产生一个驱动信号,它具有与原边PWM信号相关的死区时
[嵌入式]
单端反激式开关电源变压器设计程序
只要输入条件项目参数,电感和圈数可自动计算出来,然后在根据计算的参数作为参考调整。
条件项目: 数值 单位 数值 单位 输入AC电压最小 165.0 V 占空比 输入AC电压最大 235.0 V Krp取值 0.6 工作频率 50000.0 HZ 效率 0.8 初级反射电压 135.0 V Bm 0.2 T 输出直流电压1 24.0 V 负载电流1 2.0 A 输出直流电压2 24.0 V 负载电流2 2.0 A 输出直流电压3 24.0 V 负载电流3 0.1 A 输出直流电压4 5.0 V 负载电流4 0.5 A 反馈电压 16.0 V 负载电流5 A 输出直流功率 100.9 w 电流密度 400.0 A/cm2
[电源管理]
基于SG3525的DC/DC直流变换器的研究
0 引言 随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用。为此,美国硅通用半导体公司推出了SG3525,以用于驱动N沟道功率MOSFET。SG3525是一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠及使用方便灵活,输出驱动为推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。其性能特点如下: 1)工作电压范围宽: 8~35V。 2)内置5.1 V±1.0%的基准电压源。 3)芯片内振荡器工作频率宽100Hz~400 kHz。 4)具有振荡器外部同步功能。 5)死区时间可调。为了适应驱动快速
[单片机]
EMI辐射源强度对电路系统干扰原理与评估
EMI辐射源需要距离多远,才能使辐射信号不干扰系统呢?要想知道答案,让我们先从辐射源的辐射能量开始深入了解。
呈辐射状的电磁干扰 (EMI) 信号会从辐射源传播至某个接收单元。根本而言,这些信号的功率或者电压强度在“触及”敏感的电路时,取决于发送器的功率/天线增益以及辐射源和接收器之间的距离(请参见图 1)。
图 1 辐射源和接收器之间的 EMI 电场和功率密度关系
在进行 EMI 评估时,可能会利用电场强度或者辐射功率密度参数。电场强度量化了辐射源干扰电压的大小。这种窄带或者宽带 EMI 信号测量单位为伏每米(V/m)。您可以根据喜好,对这种电场强度单位进行修改,将它们转换成dBμV/m
[模拟电子]
基于LT3573隔离型反激式DC-DC开关电源的设计
1 引言
自从1994年单片开关电源问世以来,为开关电源的推广和普及创造了条件。开关电源的应用涉及到各种电子电器设备领域,如程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。各种新技术、新工艺和新器件如雨后春笋般,不断问世,使得开关电源的应用日益普及。开关电源高频化是其发展的方向,从最初的20kHz提高到现在的几百kHz甚至几兆赫兹,高频化带来开关电源的小型化。目前,开关电源正朝着高效节能、安全环保、小型化、轻便化方向发展。
2 LT3573简介
LT3573是一种单片开关稳压器件,专为隔离型反击式拓扑结构而设计。在隔离型反激拓扑结构中,
[电源管理]
基于LNK564DN的5V,350mA(1.75W)反激式电
基于LNK564DN的5V,350mA(1.75W)反激式电源电路
图1所示的隔离反激式电源是围绕着LinkSwitch-LP产品系列的LNK564DN(U1)而设计。在90-265 VAC的通用输入电压范围内输出可达5 V/350 mA(1.75 W)。
二极管D1和D2对交流输入电压半波整流。存储电容(C1)和L1衰减传导EMI。电感L1外包热缩套管,如果有元件损坏可做保险丝使用。 LNK564DN利用次级绕组电压在偏置绕组上的反射电压来稳定输出电压和电流,不再需要光耦器。在CV状态(从空载到1.75 W)通过跳过MOSFET开关周期来实现稳压。当负载电流超过峰值功率点后,MOSFET开关周期不再被
[电源管理]
芯片上搭建神经元电路 或破脑神经网络工作原理
研究人脑神经网络的通讯和协调运作,是现代神经科学领域最大的挑战之一。据美国物理学家组织网7月13日(北京时间)报道,最近,以色列特拉维夫大学电力工程学院开发出一种新型芯片实验室平台,利用先进材料和组织工程技术将神经元和电子学结合起来,研究脑神经网络的工作原理。研究论文发表在最新一期《科学公共图书馆·综合》上。
以色列特拉维夫大学电力工程学院博士生马克·史恩说,计算机的逻辑运算建立在人类逻辑的基础上,但计算机的信息处理过程能分解成单个逻辑步骤,而人脑的信息处理过程却不可以。人脑由大量的电路互相连接而成,脑电路工作就像在编码,我们可以通过简化脑神经网络,控制细胞之间的连接,来研究人脑逻辑。
研究人员利用电极和活的神
[医疗电子]