显微镜成像原理图

最新更新时间:2014-05-24来源: 互联网关键字:显微镜  成像原理 手机看文章 扫描二维码
随时随地手机看文章

显微镜成像原理图

我知道目镜的作用相当于放大镜,但放大镜成的像是物相同侧而显微镜当中的物镜将物体放大后,所成的像应在显微镜管内.如果目镜的原理和放大镜一样,那它的像岂不是朝人眼反方向放大(物相同侧)那么认识如何看到二次放大的像呢?显微镜的成像原理如图所示,物镜焦距较短,目镜焦距较长,物体经物镜成一倒立实像A"B",该像位于目镜焦点以内(镜筒内),它又可看作目镜的物,经目镜后成正立虚像;.其还是与放大镜一样,物像同侧)。

这个是两次折射的结果,并不是单纯一个目镜的作用。

STM的工作原理

    STM是利用量子隧道效应工作的。若以金属针尖为一电极,被测固体样品为另一电极,当他们之间的距离小到1nm左右时,就会出现隧道效应,电子从一个电极穿过空间势垒到达另一电极形成电流。且其中Ub:偏置电压;k:常数,约等于1,Φ1/2:平均功函数,S:距离。

    从上式可知,隧道电流与针尖样品间距S成负指数关系。对于间距的变化非常敏感。因此,当针尖在被测样品表面做平面扫描时,即使表面仅有原子尺度的起伏,也会导致隧道电流的非常显著的、甚至接近数量级的变化。这样就可以通过测量电流的变化来反应表面上原子尺度的起伏,如下图右边所示。这就是STM的基本工作原理,这种运行模式称为恒高模式(保持针尖高度恒定)。

    STM还有另外一种工作模式,称为恒流模式,如下图左边。此时,针尖扫描过程中,通过电子反馈回路保持隧道电流不变。为维持恒定的电流,针尖随样品表面的起伏上下移动,从而记录下针尖上下运动的轨迹,即可给出样品表面的形貌。

    恒流模式是STM常用的工作模式,而恒高模式仅适于对表面起伏不大的样品进行成像。当样品表面起伏较大时,由于针尖离样品表面非常近,采用恒高模式扫描容易造成针尖与样品表面相撞,导致针尖与样品表面的破坏。

STM原理图

STM原理图

    AFM的工作原理 

  AFM的基本原理与STM类似,在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力(10-12~10-6N),此时,微悬臂就会发生微小的弹性形变。针尖与样品之间的力F与微悬臂的形变 之间遵循虎克定律:F=-k*x ,其中,k为微悬臂的力常数。所以,只要测出微悬臂形变量的大小,就可以获得针尖与样品之间作用力的大小。针尖与样品之间的作用力与距离有强烈的依赖关系,所以在扫描过程中利用反馈回路保持针尖与样品之间的作用力恒定,即保持为悬臂的形变量不变,针尖就会随样品表面的起伏上下移动,记录针尖上下运动的轨迹即可得到样品表面形貌的信息。这种工作模式被称为“恒力”模式(Constant Force Mode),是使用最广泛的扫描方式。 
  AFM的图像也可以使用“恒高”模式(Constant Height Mode)来获得,也就是在X,Y扫描过程中,不使用反馈回路,保持针尖与样品之间的距离恒定,通过测量微悬臂Z方向的形变量来成像。这种方式不使用反馈回路,可以采用更高的扫描速度,通常在观察原子、分子像时用得比较多,而对于表面起伏比较大的样品不适用。 

原子力显微镜工作原理图

原子力显微镜工作原理图

  AFM有多种操作模式,常用的有以下4种:接触模式(Contact Mode)、非接触(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式。根据样品表面不同的结构特征和材料的特性以及不同的研究需要,选择合适的操作模式。

关键字:显微镜  成像原理 编辑:神话 引用地址:显微镜成像原理图

上一篇:显微镜的STM原理与AFM工作原理
下一篇:望远镜棱镜内部结构及原理图

推荐阅读最新更新时间:2023-10-12 21:02

OPPO手机新功能 “显微镜”解密,预计Find X3首发
数码博主 @数码闲聊站 今日在微博放出了一张是 OPPO 相机新功能的截图,也就是说 OPPO 新机的相机将支持全新的 “显微镜模式”。 据目前已有爆料,OPPO Find X3系列共包括三款机型,将在第一季度初正式发布,代号为 Fussi,首批搭载高通骁龙888芯片,首发安卓全链路色彩管理系统。此前一张 OPPO Find X3的安兔兔 跑分图 显示,OPPO Find X3或将成为目前骁龙888的最高分获得者。 该机将采用6.7英寸、1440 x 3216分辨率的显示屏 (525ppi),与三星 Galaxy Note 20 Ultra 一样,具有10Hz 至120Hz 的自适应刷新率,最大色彩范围为10.7亿。 此外,O
[手机便携]
OPPO手机新功能 “<font color='red'>显微镜</font>”解密,预计Find X3首发
德国研制出超薄显微镜 可对大面积进行一次成像
  德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。   这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。   达到这种观察效果的奥秘在于该显微镜用于成像的部分由无数紧密排列的微小透镜组成,每个透镜仅对观察对象的局部成像,每个局部的面积只有0.09平方毫米,与此同时显微镜内的软件能将这些微小局部
[医疗电子]
显微镜下的Intel 14nm
Intel 14nm是这个星球上迄今最先进的半导体工艺,ChipWorks在拿到几台Core M笔记本后也迫不及待地拆开,将处理器放到了显微镜下进行观察分析。 经过处理后得到的侧视图,因为放大率比较高所以有些模糊,但依然 能够数出10个接触栅极,总间距699nm,每两个之间约为70nm。 晶体管鳍片。 20个之间的间距是843nm,每两个之间42nm。 都完美符合Intel的宣传。 横切面照片。65nm节点引入的厚金属顶层依然在,而且现在其下 已经堆到了13层!以及一个金属绝缘层。 边封没有金属层和绝缘层,可以很轻松地数出12层。上一代22nm还只有9层,
[半导体设计/制造]
<font color='red'>显微镜</font>下的Intel 14nm
电子显微镜新型电子源问世
  近日,日本物质材料研究机构的研究人员开发出一种新型电子源,有望使电子显微镜的识别和测定能力得到飞跃式提高。   据介绍,开发出这种新型电子源的是日本物质材料机构的两名华人科学家,一次元材料组组长唐捷和研究员张涵(音译)。为了大幅度提高电子显微镜的性能,他们重点进行了新型电子源的开发,同时在电子放射方法方面也进行了创新。   目前,电子显微镜普遍使用金属元素钨作为电子源,而化合物六硼化镧(LaB6)作为电子源虽然在性能上超过钨,但其硬度超过钨一倍以上,如果没有合适的加工方法很难实现应用。此次研究人员使用了一种叫化学气相堆积法的方法,首先制成了单结晶的六硼化镧纳米线,然后使用电界蒸发的方式除去了纳米线表面的不纯物质,从而成
[医疗电子]
White推出无显微镜的高分辨率光学检测系统
O.C. White公司近日推出一款高分辨率的实时彩色图像系统,基于最新的显示器技术,这种称为“Super Scope”的系统不带显微镜,是该公司早期Super Scope 2000的后继产品。Super Scope捕获的图像可用于存档和发送e-mail,由于不采用显微镜方式,该系统能同时供多人观看图像,同时也可减轻由显微镜方式带来的眼睛疲劳和后背疼痛。 Super Scope含有一个完整的14英寸的医疗级LCD视频系统,整合了一个高分辨率高灵敏度的1/2英寸相机,能够提供清晰的图像。此外Super Scope还提供标准的4至40倍(通过2×光学镜头可达80倍)放大范围。 Super Scope系统具有音频输入、外部视
[焦点新闻]
激光扫描共聚焦显微镜系统及其在细胞生物学中的应用
  摘 要 激光扫描共聚焦显微镜是近十年发展起来的医学图象分析仪器,现已广泛应用于荧光定量测量、共焦图象分析、三维图象重建、活细胞动力学参数监测和胞间通讯研究等方面。其性能为普遍光学显微镜质的飞跃,是电子显微镜的一个补充。本文以美国Meridian公司的ACAS ULTIMA312为例简要介绍了激光扫描共聚显微镜系统的结构,功能和生物学应用前景。   关键词 激光;共聚焦显微镜;粘附细胞分析与筛选(ACAS)   激光扫描共聚焦显微镜(Laser scanning Confocal Microscopy ,简称LSCM)是近代生物医学图象仪器的最重要发展之一,它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可
[工业控制]
扫描电子显微镜技术日益精进 市场规模加速扩大
  电子显微镜是一种多功能的仪器。近年来,随着纳米科学的迅猛发展,推动了材料学、电子学、生命科学等众多学科的进步与更新。如今,电子显微镜已成为现代科学技术中不可缺少的重要工具。下面就随嵌入式小编一起来了解一下相关内容吧。   电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。以扫描式电子显微镜为例,扫描式电子显微镜主要应用于主要用于纺织、化工、印染、仪器仪表、材料分析、教学科研等许多领域。    扫描电子显微镜 作为一种强大的科学视觉仪器,可以帮助人类以难以置信的视角清晰地观察事物。近日,美国《连线》杂志公布了由美国自然历史博物馆科学家提供的一批精彩的扫描电子显微照片,特写镜
[嵌入式]
科学家开发出更加准确检测癌症的新型3D显微镜技术
日前,一项刊登在国际杂志Nature Biomedical Engineering上的研究报告中,来自瑞典卡罗琳学院和卡罗琳大学医院的研究人员通过研究开发了一种新型的显微镜技术,相比当前的二维方法而言,这种新技术能够在三维环境下检测肿瘤组织并能更准确地对癌症进行诊断。 图片摘自:www.sharewik.com 每天全世界的病理学家们都会大量的肿瘤组织进行检测,检测结果能够及时指导癌症患者进行治疗,但有时候科学家们却很难对癌症进行准确诊断,这就意味着患者可能会被给予错误的治疗方法,从而耽误病情甚至引发患者死亡。 当前评估肿瘤发展阶段的病理学检测方法通常利用二维光学显微镜检查技术,癌症阶段能够描述癌症的发展和扩散程度,对于患者
[医疗电子]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved