如何保护ADC输入

最新更新时间:2017-05-19来源: EEWORLD关键字:ADC  ADI 手机看文章 扫描二维码
随时随地手机看文章

作者:Alan Walsh  ADI公司

在设计ADC电路时,一个常见的问题是如何在过压条件下保护ADC输入。ADC输入的保护具有许多情况和潜在解决方案。所有供应商的ADC都在此方面具有相似需求。本文将深入分析过压情形中可能出现的问题、发生频率及潜在的补救措施。

ADC输入的过驱一般发生于驱动放大器电轨远远大于ADC最大输入范围时,例如,放大器采用±15 V供电,而ADC输入为0至5V。高压电轨用于接受±10 V输入,同时给ADC前端信号调理/驱动级供电,这在工业设计中很常见,PLC模块就是这种情况。。如果在驱动放大器电轨上发生故障状况,则可因超过最大额定值而损坏ADC,或在多ADC系统中干扰同步/后续转换。本文将重点讨论如何保护精密SAR ADC,如AD798x系列,但也适用于其他ADC类型。

试考虑图1中的情形。


QQ图片20170519172822.png


图1.精密ADC设计的典型电路图

本电路代表AD798X(例如AD7980)系列PulSAR® ADC中的情形。输入端、基准电压源和接地之间存在保护二极管。这些二极管能够处理最高130mA的大电流,但仅能持续数毫秒,不适用于较长时间或重复过压。在一些产品上,例如AD768X/AD769x(如AD7685、AD7691)系列器件,保护二极管连接至VDD引脚而不是REF。在这些器件上,VDD电压始终大于或等于REF。一般而言,此配置更有效,因为VDD是更稳定的箝位电轨,对干扰不敏感。

图1中,如果放大器趋向+15 V电轨,则连接至REF的保护二极管将开启,放大器将尝试上拉REF节点。如果REF节点未通过强驱动器电路驱动,则REF节点(及输入)的电压将升至绝对最大额定电压以上,一旦电压在该过程中超过器件的击穿电压,ADC可能受损。图3举例说明了ADC驱动器趋向8 V而使基准电压(5 V)过驱的情况。许多精密基准电压源无灌电流能力,这在此情形中会造成问题。或者,基准驱动电路非常强劲,足以将基准电压保持在标称值附近,但仍将偏离精确值。

在共用一个基准电压源的同步采样多ADC系统中,其他ADC上的转换不精确,因为该系统依赖于高度精确的基准电压。如果故障状况恢复时间较长,后续转换也可能不精确。

缓解此问题有几种不同方法。最常见的是使用肖特基二极管(BAT54系列),将放大器输出钳位在ADC范围。相关说明详见图2和图3。如果适合应用需求,也可使用二极管将输入箝位在放大器。


QQ图片20170519172959.png


图2.精密ADC设计的典型电路图(添加了肖特基二极管和齐纳二极管保护)

在此情况中,之所以选择肖特基二极管,是因为其具有低正向导通压降,可在ADC内的内部保护二极管之前开启。如果内部二极管部分开启,肖特基二极管后的串联电阻也有助于将电流限制在ADC内。对于额外保护,如果基准电压源没有/几乎没有灌电流能力,则可在基准节点上采用齐纳二极管或箝位电路,以保证基准电压不被过度拉高。在图2中,为5V基准电压源使用了5.6V齐纳二极管。

P2  保护ADC输入

QQ图片20170519173013.png


图3.黄色 = ADC输入,紫色 = 基准电压源。左侧图像未添加肖特基二极管,右侧图像添加了肖特基二极管。


QQ图片20170519173031.png


图4.黄色 = ADC输入,绿色 = ADC驱动器输入,紫色 = 基准电压源(交流耦合)。左侧图像未添加肖特基二极管。右侧图像添加了肖特基二极管(BAT54S)。

图4中的示例显示了以正弦波使ADC输入过驱时,给ADC输入添加肖特基二极管后对基准输入(5 V)的影响。肖特基二极管接地,5 V系统电轨能够吸电流。如果没有肖特基二极管,当输入超过基准电压和地电压一个压降时,就会出现基准电压源干扰。从图中可看到,肖特基二极管完全消除了基准电压源干扰。

需要注意肖特基二极管的反向漏电流,此电流在正常运行期间可引入失真和非线性。该反向漏电流受温度影响很大,一般在二极管数据手册中指定。BAT54系列肖特基二极管是不错的选择(25°C时最大值为2μA,125°C时约100μA)。

完全消除过压问题的一种方式是为放大器使用单电源电轨。这意味着,只要为基准电压(最大输入电压)使用相同电源电平(本例中为5V),驱动放大器就绝不会摆动至地电压以下或最大输入电压以上。如果基准电路具有足够的输出电流和驱动强度,则可直接用来为放大器供电。图5中显示了另一种可能性,也就是使用略低的基准电压值(例如,使用5 V电轨时为4.096 V),从而显著降低电压过驱能力。

这些方法可解决输入过驱的问题,但代价是ADC的输入摆幅和范围受限,因为放大器存在上裕量和下裕量要求。通常,轨到轨输出放大器可在电轨十几mV内,但也必须考虑输入裕量要求,可能为1 V或更高,这会将摆幅进一步限制在缓冲器和单位增益配置内。该方法提供了最简单的解决方案,因为不需要额外保护元件,但依赖正确的电源电压,可能还需要轨到轨输入/输出(RRIO)放大器。


QQ图片20170519173044.png
图5.单电源精密ADV设计的典型电路图

P3


放大器与ADC输入之间的RC滤波器中的串联R也可用于在过压状况期间限制ADC输入处的电流。不过,使用此方法时需要在限流能力与ADC性能做出取舍。较大的串联R提供较佳的输入保护,但会导致ADC性能出现较大失真。如果输入信号带宽较低,或者ADC不在满吞吐速率下运行,这种取舍可行,因为此情况下串联R可以接受。应用可接受的R大小可通过实验方式确定。

如上文所述,保护ADC输入没有成法,但根据应用要求,可采用不同的单独或组合方法,以相应的性能取舍提供所需的保护水平。

作者简介


Alan Walsh[alan.walsh@analog.com]是ADI公司的应用工程师。他于1999年加入ADI公司,就职于美国马萨诸塞州威明顿市的精密转换器应用部。他拥有都柏林大学电子工程学士学位。




关键字:ADC  ADI 编辑:冀凯 引用地址:如何保护ADC输入

上一篇: ADI 推出了一款28纳米新的高速数模转换器(D/A转换器)
下一篇:AD7770和AD7779的诊断特性

推荐阅读最新更新时间:2023-10-12 21:04

ADI危岩体滑坡监测解决方案
滑坡在地质学中被定义为仅次于地震的第二大地质灾害。山体滑坡、危岩体滑坡也是我国山区地带最为常见、最易发的地质灾害,能在短时间内迅速掩埋或摧毁铁路公路、涵洞、路基桥梁等设施,严重影响道路运输安全。 近年来,国内高速公路的建设步伐不断加快,通车里程不断向偏远地区延伸,山区路段受地理地质因素限制,建设过程中不可避免会出现一些危险岩石。如何根据偏远地区特殊的地形地貌因素,对公路危岩体灾变进行有效的监测和脱落预警,从而有效防止出现严重垮塌灾害事件,降低公路工程建设和运营期间人员伤亡事件与社会经济损失,已成为交通行业亟待解决的工程难题。 一、危岩体滑坡监测现状 滑坡监测内容主要是以下几个方面:地面变形、地下变形、应力观测、降水、地下水
[测试测量]
<font color='red'>ADI</font>危岩体滑坡监测解决方案
ADI推出数字视频参考设计 推动智能摄像头发展
Analog Devices, Inc. (ADI)最新推出基于该公司Blackfin BF526C处理器的一款完整的IP监控和机器视觉摄像头参考设计。该参考设计用于帮助工程师快速开发和定制“智能摄像头”设计,实现一个包括摄像头镜头和D1/HD1/CIF分辨率图像传感器在内的完整IP视频摄像头。 “这款设计包含高级的、联网数字摄像头的所有功能。”ADI公司通用DSP部门工业视频和成像解决方案产品线经理Michael Long表示,“Blackfin方案的性能可实现从基础监控到当今高级‘智能摄像头’产品的许多功能。” 该参考设计主要瞄准开发安全监控和机器视觉应用,其包括一个运行uClinux™操作系统的
[安防电子]
STM32F7xx —— ADC
/***************************************************************************** * ADC1 ADC2 ADC3 * 通道0 PA0 PA0 PA0 * 通道1 PA1 PA1 PA1 * 通道2 PA2 PA2 PA2 * 通道3 PA3 PA3 PA3 * 通道4 PA4 PA4 PF6 * 通道5 PA5 PA5 PF7 * 通道6 PA6 PA6 PF8 * 通道7 PA7 PA7 PF9 * 通道8 PB0 PB0 PF10 * 通道9
[单片机]
浅谈音视频ADC在动态范围上的应用
ADC作为模拟与数字信号转换的渠道,是当下数字信号的主要来源之一。随着短视频平台、AR/VR的兴起,产出音视频图像内容已经与我们息息相关了,对音视频ADC的各项指标提出了新的要求,尤其是在动态范围这一关键指标上。 音频用ADC 在音频DAC中,由于调制方式和采样率的原因,24bit到32bit的ADC如今已经成了常客。虽然提升1bit就会意味着更高的功耗,但对于音频这种原本转换与处理和转换就属于低功耗的应用,位深自然是越高越好。而且音频ADC厂商们都会采用一些结构设计,用于进一步提升ADC的动态范围。 TI作为音频转换器大厂,在收购了Burr-Brown后,陆续推出了一系列音频ADC和DAC产品。以PCM1820-Q1为例
[嵌入式]
ADI官网开启面向中国的在线购买平台
近日,全球领先的高性能信号处理解决方案供应商ADI公司已全面开启中国在线购买大门。目前,ADI公司已经覆盖了包括美国、英国、德国、意大利、爱尔兰、瑞士、墨西哥、马来西亚、印度、韩国、日本等多达50多个国家及地区在内的在线购买网络。此次扩充中国大陆、香港及台湾地区在线购买阵营,无疑是进一步加速了ADI公司推进卓越在线客户服务的脚步。 通过中国在线购买平台,客户可以轻松购买到ADI公司的全线芯片产品,并且不限起订量及不设定最低购买金额。除了芯片外,ADI中文官网在线购买还提供了ADI研发的各种 评估板及开发套件,一直困扰中小客户因无法小批量购买以及订购评估板和开发套件难的问题,在ADI中文官网购买平台上将完全解决。 为方便
[半导体设计/制造]
ADI改进智能电网传输和配电设备的监控和保护性能
Analog Devices, Inc. (ADI),全球领先的高性能信号处理解决方案供应商,最近推出 24 位数据采集片上系统 (SoC) 产品系列,用于改进智能电网系统内管理电能传输和分配的防护、监控和电能质量测量设备的性能。 AD7770 实现了性能更高、尺寸更小的保护继电器 , 而 AD7771 可帮助电能质量测量设备进行电网早期故障的检测。产品系列中的第三代 SoC 产品 AD7779 可确保断路器装置快速上电。 AD777x 系列的三款产品实现了业界最佳的动态范围和数据输出综合性能,具有八个同步采样通道,可在三相电源应用中测量电流和电压传感器的输出。每个 SoC 通道在 8 kSPS 时可达到 112-dB 的动态范围
[工业控制]
<font color='red'>ADI</font>改进智能电网传输和配电设备的监控和保护性能
STM32入门学习之ADC(STM32F030F4P6基于CooCox IDE)
#include stm32_lib/inc/stm32f0xx_rcc.h #include stm32_lib/inc/stm32f0xx_adc.h #include stm32_lib/inc/stm32f0xx_gpio.h int main(void) { //时钟配置 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE); //ADC IO配置,此处定义PA0口为ADC端口 GPIO_InitTypeDef PORT_ADC; PORT_AD
[单片机]
使用STM32ADC看门狗测量出待测信号
我们在做ADC应用时,有些场合需要精确测量出待测信号的数据,有时可能并不关心ADC结果多准确,只要满足某个范围即可,这时我们就可以考虑使用STM32ADC看门狗功能了。 STM32 ADC基本上都支持模拟看门狗功能,即ADC模块对被检测的模拟通道的转换结果基于硬件对其合法性、安全性进行监测。我们可以设置被监测通道的转换结果合法性检查的上下阈值,若结果处于阈值之外则视为异常,并可以触发中断。 尤其有些场合,我们可能使用到数个ADC通道,8个、10个甚至更多,同时程序还需要基于各通道的转换结果进行合法性或安全性监测,此时使用ADC模拟看门狗功能就很方便。我们可以先让模拟看门狗做第一步把关,只有出现异常数据时才去进一步检查确认。
[单片机]
使用STM32<font color='red'>ADC</font>看门狗测量出待测信号
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved