常用于调节隔离式电源输出电压电路

最新更新时间:2018-04-09来源: 电子设计关键字:开关电源  TLV431B 手机看文章 扫描二维码
随时随地手机看文章

TL431 并联稳压器或许是隔离式开关电源中最常见的 IC,其可提供低成本的简单方式精确调节输出电压。图 1 是 TL431 及典型应用电路(用于调节隔离式电源输出)的方框图。TL431 在单个三端器件中整合一个内部参考和一个放大器。R3 和 R5 电阻分压器以及 TL431 的内部参考电压可设定输出电压。在 TL431 内部,误差放大器输出可驱动晶体管的基极。晶体管集电器不仅可连接 TL431 的 K (阴极)引脚,而且还可驱动一个光耦合器,其可将隔离边界的误差信号发送至主控制器。反馈环路的频率响应由位于 TL431 阴极与 REF 引脚之间的补偿组件形成。

图 1. 常用于调节隔离式电源输出电压的 TL431 电路。


在转换器输出电压小于 5V 时,该电路开始出现一些局限性。阴极的最小推荐工作电压等于参考电压,标准版 TL431 为 2.5V。光耦合器内部光电发射器支持约 1.5V 的最大正向压降。如果输出电压小于 4V,则光耦合器可能无法完全正向偏置。此外,还需要为偏压电阻器 (R1) 分配额外的电压裕度。这可将标准 TL431 实际使用输出电压限定在 4.5V 以上。TL431 有 TLV431 等低电压版本,可提供 1.25V 参考。这可为采用 3.3V 输出驱动光耦合器提供充足的性能空间。使用该部件调节更低的输出电压,需要对标准电路进行修改。


如图 2 所示,只要添加一个 PNP 晶体管,就可使用低电压 TLV431 调节小于 3.3V 的输出电压。在该电路中,TLV431 的阴极可驱动 PNP 晶体管的基极,其可配置为射极跟随器。这允许光耦合器在 PNP 晶体管集电极与接地之间移动,在这里可为光电发射器正向压降提供足够的空间。由于最低阴极电压为 1.25V,基极至发射极典型电势为 0.7V,因此 Q1 发射极的最低电压约为 1.95V。这可使用 2.5V 输出为偏压电阻器留 0.5V 压降。


这种简单修改可扩展 TLV431 稳压电路范围,使其包含 2.5V 电轨。然而对于低于 2.5V 的输出电压而言,标准稳压电路所需的修改就要复杂得多。最终,必须专门生成一个更高电压的辅助电源轨为 TLV431 供电并驱动光耦合器。

图 2. 添加晶体管有助于 TLV431 驱动光耦合器为 2.5V 输出接地。

关键字:开关电源  TLV431B 编辑:王磊 引用地址:常用于调节隔离式电源输出电压电路

上一篇:反激式转换器波形受到漏电感的影响
下一篇:64层第二代3D NAND存储产品及解决方案

推荐阅读最新更新时间:2023-10-12 21:04

开关电源直流EMI滤波器的设计及实现
摘要:介绍了基于二端口网络理论的开关电源直流EMI滤波器设计的一般原理和方法。该原理适合于任何滤波器的设计,在实际应用中取得了良好的滤波效果。 关键词:EMI滤波器;输入导纳;输出阻抗 引言 电子技术的迅速发展,对电子仪器和设备提出了更高的要求:性能上,更加安全可靠;功能上,不断增加;使用上,自动化程度越来越高;体积上,要日趋小型化。这使得具有众多优点的开关电源在计算机、通信、航天、彩色电视等方面得到了日益广泛的应用。但是,在开关稳压电源中,开关管工作在开关状态,其交变电压和电流会通过电路的元器件产生很强的尖峰干扰和谐振干扰。这些干扰严重地污染了市电电网,影响了邻近电子仪器及设备的正常工作;同时,由于这一缺点,使得开关电源
[应用]
开关电源纹波来源及控制
   开关电源 输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声...   1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关 电源 输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。电流型控制DC / DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC / DC变换器闭环增益来消除。    低频纹波抑制的几种常用的
[电源管理]
解析室外LED显示屏开关电源设计理念
  led显示屏的研究采用屏幕为8×8的点阵显示,侧重于动态处理方法,由于显示屏幕的局限性,在此次的研究设计中只能显示英文和数字。一个基本的led屏幕由8行×8列点共64个led组成,显示屏有共阴和共阳两种连接方式。对由8×8点阵构成的led显示屏而言,一般数据端连接微处理器的8位并行数据口,而选通端则逐一使能(选通),选择需要点亮的某一列,通过分时复用方式实现动态显示效果。选通方式一般有两种:独立选通和译码选通。   如果屏幕较小,处理器有足够的I/O口可用,则可以每个I/O口连接一个选通端,如果屏幕较大,或者处理器的I/O口不是非常丰富,则可以通过译码方式来选通。例如当8片8×8点阵的led组成一个8×128点阵的led屏幕时
[电源管理]
基于TOPSwitch的超宽输入隔离式稳压开关电源
摘要:介绍了单片开关电源芯片TOPSwitch的结构及工作原理,给出了超宽输入隔离式稳压开关电源的完整应用电路实例,并对设计和制作过程中的一些注意事项进行了说明。 关键词:隔离;宽输入;开关电源 引言 开关电源(SwitchingPowerSupply)自问世以来,就以其稳定、高效、节能等优良性能而成为稳压电源的主要产品。而高度集成化的单片开关电源,更是因其高性价比、简单的外围电路、小体积与重量和无工频变压器隔离方式等优势而成为稳压电源中的佼佼者。随着各种不同的单片开关电源芯片及其电路拓扑的应用和推广,单片开关电源越来越体现出巨大的实用价值和美好前景。但是,TOPSwitch通常允许的输入电压变化范围为120~370V,本
[应用]
开关电源设计—变压器流程
 本系列文章从理论基础开始,由经验丰富的前工程师为大家讲解关于 开关电源 的设计,并对其中难点进行讲解,这个系列当中几乎包含了所有的常见拓扑电路,并且为采用自学方式的工程师量身打造,希望能够帮助大家走出迷茫,尽快迈上正轨。    计算初级电感量   K值就是上面说的电流连续比上面计算书定义的Ip2是电流上升前沿Ip1是电流上升后沿。所以当K=0的时候 变压器 是工作在临界模式以下的为防止计算出错一般习惯取0.001.   断续模式Ip就是 I;   得到了 I由--》E*T=L* I得:   Lp=(Vinmin*Tonmax)/ I   这时候就得到了变压器初级所需要的电感
[电源管理]
<font color='red'>开关电源</font>设计—变压器流程
小贴士:按开关功率管的连接方式划分开关电源的种类
开关电源 是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。所以今天我们来说说它的种类划分: (1)单端正激式开关电源电路 该电路中仅使用一个开关功率管,这种电路的特点是 开关功率管 导通时,开关变压器初级中的能量传递给次级负载电路。负载电路包括滤波电抗器和电容器以及真正的负载系统,其中滤波电抗器和电容器既起滤波又起储能的作用。也就是在开关功率管关闭时
[电源管理]
开关电源原理与设计(连载35)交流输出半桥式变压器开关电源(part2)
      上面的(1-162)和(1-163)式并没有完全考虑,开关变压器初级线圈N1绕组产生的反电动势对电容器C1和C2进行反充电所产生的影响。当开关变压器初级线圈N1绕组产生的反电动势对电容器C1和C2进行反充电时,相当于变压器次级线圈N2绕组输出电压uo也要通过变压比被电容器C1、C2存储的电压进行限幅。因此,变压器次级线圈N2绕组输出电压uo中的反激式输出电压 ,并不会像(1-162)和(1-163)算式所表达的结果那么高。       显然变压器次级线圈回路产生反电动势的高低还与控制开关K1和K2交替接入的时间差有关,与K1和K2的接入电阻的大小还有关。一般电子开关,如晶体管或场效应管,刚开始导通的时候也不能简单地
[电源管理]
开关电源电磁骚扰的抑制
摘要:针对开关电路电磁骚扰问题。阐述了功率开关管产生电磁骚扰的机理,以及电磁骚扰的产生原因和传播的途径。提出了选择合适的工作频率、电路元器件、缓冲电路、功率因数校正网络、屏蔽、滤波网络和接地技术来减小开关电路电磁骚扰的措施和方法。实践和试验证明,这些措施和方法对减小开关电路的电磁骚扰具有明显的效果。 关键词:开关电源;电磁骚扰;抑制 前言 随着现代科学技术的发展,开关电源被广泛应用于各种电子设备或系统之中。开关电源性能的好坏,直接影响设备或系统的正常运行。开关电路是开关电源的核心,开关电路在高频下的通、断过程产生大幅度的电压跳变,即产生的dv/dt具有较大幅度的脉冲,频带较宽且谐波丰富,是开关电源电磁骚扰的主要因素。抑制开
[应用]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved