在本 Fly-Buck™ 拓扑系列博客的第 1 部分,我们介绍了隔离侧二次补偿环路的意图和理念。本文我们将回顾这种补偿电路并展示二次侧稳压的改善效果。
图 1. 在二次输出上提供反馈补偿电路的 Fly-Buck 转换器
图 1 是完整的补偿电路与原型 LM5017 应用电路。外部补偿电路包含一款用于反馈隔离的光耦合器以及用作误差放大器在较低频率下提供很大增益的并联稳压器 LM431A [3]。反馈电路包含一个可确定截止频率的典型 I 类补偿网络 (C1、R1)。此外,该 I 类补偿还可确保高 DC 增益,减少低频率 DC 稳压误差。在光耦合器中的光电晶体管开启时,一次输出的有效反馈比会下降。
图 2 是具有正确电路参数的修改电路。增加补偿电路后,电阻分压器比率 (RFB2/RFB1) 的视在值在工作过程中会发生变化。高侧反馈电阻器 RFB2 需要通过更新重新调整一次输出电压,使其设定值略高于额定 12V。
图 2. 基于 LM5017 的 Fly-Buck 转换器电路提供基于光耦合器的稳压电路
正如图 3a、4a 和 5a(虚线)中所示,基于光耦合器的二次侧稳压电路与无补偿二次输出相比,可显著改善二次稳压效果。在原型 LM5017 电路中,二次输出电压在负载条件下出现了负梯度,使用该电路显著降低了这种负梯度。随着输入电压的增加,二次输出电压会得到不断稳压,使其接近 5V 额定值。然而,二次侧上这种改善的稳压性能也是以一次输出稳压过程中末端降低换来的,因为这两组输出的基本关系仍然取决于功率级。图 3b、4b 和 5b 是该最新配置下的有效一次稳压,以及将其与相应初始电路对比的情况。
图 3a. 二次侧负载稳压
图 3b. 一次侧负载稳压
图 4a. 二次侧负载稳压
图 4b. 一次侧负载稳压
图 5a. 二次侧负载稳压
图 5b. 一次侧负载稳压
在初始 Fly-Buck 转换器中添加该隔离式反馈补偿电路的主要目的是在整个负载和输入电压范围内改善二次输出电压稳压效果。以上结果显示,该隔离式补偿电路对保持隔离式输出电压稳压非常有帮助。
关键字:转换器 LM5017 Fly-Buck
编辑:王磊 引用地址:反馈补偿电路的Fly-Buck转换器应用
推荐阅读最新更新时间:2023-10-12 21:04
750mA、42VIN 同步降压型 DC/DC 转换器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA) – 2017 年 6 月 19 日 – 亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司 (Linear Technology Corporation) 推出 750mA、42V 输入同步降压型开关稳压器 LT8607。该器件采用独特的同步整流拓扑,在 2MHz 切换时可提供 93% 的效率,从而使设计师能够避开关键噪声敏感频段 (例如 AM 无线电频段),同时实现占板面积非常紧凑的解决方案。突发模式 (Burst Mode®) 工作在无负载的备用情况下可保持静态电流低于 3µA,从而使该
[电源管理]
图像数字转换器
Fairchild公司的FMS9884A图像数字转换器是一个完整的集成模拟接口。它可把分辨率1280×1024(85Hz刷新)或1600×1200(75Hz刷新)RGB图像数字化,采用隔行像互取样。ADC取样时钟由外部源或用内部PLL的输入水平同步信号激励。输出数据经一个端口(全速率)或双端口(每个端口都是半速率)输出。通过SMBus/I2C兼容串行端口存取寄存器进行设置和控制。输入幅度范围是500~1000mV(DC或AC耦合)。AC耦合输入的低基准由输入箝位建立,输入箝位由内部产生或外部提供。三个信道所共有的箝位脉冲、带隙基准电压和时钟由PLL或外部源提供。数字数据电平是2.5~3.2V
CMOS兼容。
FMS
[应用]
有源钳位拓扑结构关断重置开关的正向转换器
有源钳位拓扑是众多流行拓扑结构中的一种,因为其允许在一个电子子系统中高效地将总线电压转换为逻辑 IC 上所需的电压。一篇回顾有源钳位拓扑关断重置开关的文章已经刊发 。这篇文章完整地介绍了开关周期。此外,该文章还描述了主开关从“开”到“关”的转换,以及“有源钳位”开关开启点电路的电压和电流。这种对于有源钳位开关的描述,主要针对有源钳位正向转换器输出电感中存在连续电流的情况。文中提及的变压器为一种理论模型,其描述了漏极电感 LL、磁化电感 Lm 以及耦合绕组 Np 和 Ns 等独立元件。该介绍以周期的功率分配中点开始,并将图 1 所示电路作为讨论的根据。箭头表示正电流。由于其本身固有的主体二极管和漏—源电容,图中还显示了开关 Q1(有
[模拟电子]
模数转换器的电源去耦问题解析
模数转换器的电源去耦问题解析
尽管高速ADC给电源带来的总负载是稳定的,但需要电流以ADC采样速率和此频率的谐波快速跳变。由于电路板和走线的电感会限制电源能够迅速提供的电流量,因此ADC所需的高频电流是由板电源去耦电容提供的。为高速ADC供电时,应同时采用大的电源去耦电容和局部(ADC引脚处)去耦电容。大去耦电容存储电荷以对电源层和局部去耦电容充电,局部去耦电容则提供ADC所需的高频电流。有效的去耦还能将高频电源瞬变限制在距离产生瞬变的IC非常近的区域,从而使电路板上产生的电磁辐射 (EMI) 降至最小。
一般而言,应为每个ADC电源轨至少提供一个大去耦电容。这些电容应当是10uF至22uF范围内的低ESR陶瓷或钽电容
[模拟电子]
低EMI/EMC开关转换器如何简化ADAS设计
背景知识 ADAS是高级驾驶员辅助系统的英文缩写,它在当今许多新型汽车和卡车中很常见。此类系统通常有助于安全驾驶;当检测到周围物体(例如不遵守交通规则的行人、骑车人,甚至有其他车辆位于不安全的行驶轨迹上)构成风险时,系统可以向驾驶员提供警报!此外,这些系统通常提供自适应巡航控制、盲点检测、车道偏离警告、驾驶员困倦监控、自动制动、牵引控制和夜视等动态特性。因此,消费者对安全性日益增强的重视、对驾驶舒适性的要求以及政府安全法规的不断增加,是未来十年后半时期汽车ADAS的主要增长动力。 这种增长对行业来说并不是没有挑战,包括价格压力、通货膨胀、复杂性和系统测试的困难性。此外,欧洲汽车行业是最具创新性的汽车市场之一,这点不足为奇,
[电源管理]
电流断续时Cuk转换器的工作原理和基本关系
如果减小负载电流Io,则输入电流Ii也相应地减小,在不考虑转换器的损耗时,U。I。=UiIi。当I。小到一定值时,iL1的最小值IL1min=0,但由于IL2min 0,故二极管电流的最小值IDmin 0,转换器仍处于电流连续工作方式。如果进一步减小负载电流I。时,则电流iL1的波形将出现负值如图(c)所示。如果电流iL1的负值最大值IL1min,的绝对值,正好和电流iL2的最小值IL2min,相等时,则在t=Ts时,二极管电流tD正好为零,这就是Cuk PWMDC/DC转换器电流临界连续的工作模式。电流iL1的波形有负值表示电感L1中的电流反向流动,这种现象是由于电容C1的储能引起的。
如果再一步地减小负载电流I。,则Cuk
[电源管理]
电流模式控制DC/DC转换器中的电流检测电路设计
电流检测 电路是电流模式控制所必需的, 通过检测功率开关管上的电流, 然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差 放大器 的输出进行比较, 从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种, 一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法, 又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性, 而且也会增加功耗。本文根据具有 反馈控制 电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路
[电源管理]
用D/A转换器实现高精度可编程增益放大器
实际应用中,常常需要一个增益可软件编程的放大器(PGA),用来将不同幅度的模拟输入信号放大到某个特定范围,便于A/D转换器进行采样,或者将给定信号放大一个由软件设定的增益后输出。但可供选用的现成的可编程增益放大器并不多见,需要采用其它方法来实现,通常有两种方法:1)运放+模拟开关+电阻网络;2)运放+数字电位器。其中,前一种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。此种方法所需元器件较多,电路庞大,而且精度受到限制。第二种方案采用固态数字电位器来控制放大电路的增益,线路较为简单。但现有的数字电位器分辨率有限,常见的有32、64抽头,少数可达1024抽头,因而构成的放大器精度有限,无法满足10位甚至12
[应用]