有源钳位拓扑是众多流行拓扑结构中的一种,因为其允许在一个电子子系统中高效地将总线电压转换为逻辑 IC 上所需的电压。一篇回顾有源钳位拓扑关断重置开关的文章已经刊发[1]。这篇文章完整地介绍了开关周期。此外,该文章还描述了主开关从“开”到“关”的转换,以及“有源钳位”开关开启点电路的电压和电流。这种对于有源钳位开关的描述,主要针对有源钳位正向转换器输出电感中存在连续电流的情况。文中提及的变压器为一种理论模型,其描述了漏极电感 LL、磁化电感 Lm 以及耦合绕组 Np 和 Ns 等独立元件。该介绍以周期的功率分配中点开始,并将图 1 所示电路作为讨论的根据。箭头表示正电流。由于其本身固有的主体二极管和漏—源电容,图中还显示了开关 Q1(有源钳位开关)和 Q2。我们之所以还能够看到 Q3 和 Q4 栅—漏电容,是由于它们会影响电流。
图 1 拓扑、电压和电流为了简化示波器波形,将主次接地参考连接在一起以形成一个公共接地。初始条件为:Q2 开启,流经 Q2 (Iq2) 的电流等于来自 Vin (IIN) 的电流。Q3 开启,并将电流导过次级绕组 Iout。Q1 和 Q4 都关闭。Q1 的漏极具有约负 2 Vin 偏置电压,同时 Q4 漏极的电压为 Vin*(Ns/Np)。电流 Iin 流经变压器的主绕组、引脚 1 和 引脚 2,从而首先流经漏极电感 LL,之后分流为 Im 和 Ip。Im 为流经 Lm 的磁化电流,而 Ip 为通过主绕组 Np 与次级耦合的电流。随后,Im 和 Ip 电流重新会合,在引脚 2 从变压器流出,最后流过开关 Q2。电流 Is 等于在引脚 4 从变压器次级绕组流出的电流 Ip*(Np/Ns),其反映了流经 Np的电流 Ip。结果是这两种电流在磁芯中磁通相抵。另一方面,磁化电流是由一次侧磁化电感两端的输入电压引起的。该电流以 Vin/Lm 比率不断增加。在引脚 4 上,变压器的二次侧电压高于输出电压。二者之间的差会导致 Q2 开启期间流经输出电感的电流不断增加。同时,该电流还以 (((Vin*(Ns/Np)) – Vout)/Lout 比率不断增加。当反射至一次侧时,这种变化的电流会比 Im 具有更高的变动率。因此,它通常是计算控制环路时唯一要考虑的电流斜坡。测试部件的变压器拥有 6:1 的匝数比,因此您在查看波形时必须将其考虑在内。由于变压器引脚 3 和引脚 4 两端存在电压,Q3 在 Q3 米勒电容栅极侧被偏置,同时 Cgdq3 被偏置为高电平。由于转换开始 Q1 关闭,因此在该 P 通道 FET 漏极上存在一个负电压。假设占空比为 50%, Cr 两端的电压则约为 Vin 的 2 倍,同时 Q1 漏极(即 P 通道 FET)上的电压为低于接地电压 2*Vin。由于相比 LL,Lout 和 Lm 均相对较大,并且这种情况下我们所说的是约 120 纳秒的时帧,因此我们可以假设 Iout(流经 Lout 电流)和 Im(流经磁化电感的电流)始终保持恒定。我们将要描述的事件顺序共有 5 个不同的阶段。每个阶段的开始和结尾均在如图 2-3 所示屏幕截图中标示出来,其分别为 t1、t2、t3、t4 和 t5。从 t1 开始,该控制电路关闭 Q2。这是一个非常快速的转换。由于 Q2 和 Q1 的极大漏—源电容,其为一个从 Q2 的低阻抗到高阻抗的零电压转换。从变压器引脚 2 流出的电流现在正对 Q2 的固有漏—源电容充电,并经过重置电容 Cr 流入 Q1,从而导致变压器引脚 2 的电压线性上升,以及 Q1 漏极电压的相应上升。现在,我们需要来研究一下相对电压。
图 2 变压器引脚 2 和引脚 4 上的电压
图 3 变压器引脚 2 和引脚 3 上的电压引脚 2 上的电压增加(也即时间t1的电压),反映在整个变压器绕组中。这就导致引脚 4 上电压的下降。由于 Np 和 Ns 绕组的电压必须保持平衡,所以在 Q4 的漏—源电容以及 Q3 和 Q4 的栅—漏电容均存在电压变化。Lout 中的电流不会有较大的变化,因此从这三个电容流出的电流必然是 Is 和 Ip 变化的结果。Ip 中电流的微小变化导致主次级电容电压以一种平稳的速率变化。这时,当 Q3 即将关闭时,输出电感便能够通过 FET 自身下拉所有其需要的电流(栅极电阻延迟了 FET 关闭)。Q4 的主体二极管被反向偏置。在这部分转换期间,引脚 2 的电压仍然低于 Vin,因此主电流即流入变压器的 Iin 没有理由下降。输出电感两端的电压随引脚 4 的电压下降而变化,以反映主绕组电压的逐渐下降。由于变压器引脚 4 的电压不断下降,因此输出电感两端的电压会发生变化。现在,输出电压 Vout 超出了变压器引脚 4 的电压。这些因素以一个固定比率不断变化,因为 Iin 不断线性地对 Q1 和 Q2 的漏—源电容充电,直到出现时间 t2,也即引脚 2 电压达到 Vin (50V),Q1 漏极电压达到–50V,以及引脚 4 电压达到零伏时。时间 t2至 t3 期间,流经一次侧漏极电感的电流仍然几乎与转换之初相同,同时引脚 4 的电压不断下降。这反映在引脚 2 的电压中,其超出变压器引脚 1 的电压。输入电流的任何变化都是由对输出开关栅—源电容的充电和放电引起的,并且这种变化非常小。反向一次侧电压可使引脚 4 的电压继续下降,达到接地电平以下,而引脚 3 却保持在接地电平,因为 Q3 连续关闭,请参见图 3。FET Q4 两端的电压下降不足以使电流通过 Q4 的主体二极管。与此同时,Q3 还没有完全关闭。这就迫使输出电感不断从变压器二次侧吸收电源。结果是,在一次侧中出现持续电流,而在引脚 2 上电压不断上升。这种情况将会持续到时间 t3,其 Q4 的主体二极管开始导电。现在,可以从变压器引脚 4 吸收输出电感电流,并流经 Q4。一次侧漏极电感现在将形成一个电压,以平衡引脚 2 上不断上升的电压,这样便可以持续地吸收电流。这种情况开始减少可反映流经 Q3 电流减少的输入电流 Iin,因为 Iout 电流开始向 Q4 主体二极管转换。时间 t3 到 t4 反映的是从 Ns 绕组吸电流到流经 Q4 主体二极管的输出电流 Iout 转换。Np 和 Ns 绕组电流的减少,用变压器引脚 2 电压斜坡表示,其随流经变压器一次侧 Np 电流的减少而变缓、变平。与此同时,引脚 3 上的电压不断上升,同引脚 4 电压的情况一样,其为负电压。结果是变压器引脚 3 和引脚 4 的近似零的微小变化,但却产生整个绕组的正电压漂移。这种情况将关闭 Q3,并开启 Q4。获得这种结果所必需的电流,对 Q4 的栅—漏电容充电,对 Q3 的栅—漏电容放电,进入引脚 4,最后从引脚 3 流出。该电流由一次侧磁化电流提供,其位于周期中这一点的峰值处。流经 Np 的磁化电流 Im以 Ip 的反向流动。其使得 Is 电流反向,从而让 Q4 的栅极得到充电。由于该磁化电流 Im 现在将高效地流经 Np,因此它现在从 Vin 吸收电流,并使其对 Q1 和 Q2 的漏—源电容充电。所以,从引脚 2 出来转变为变压器引脚 2 电压的电流极少(或者没有)。结果是在上述 t3 和 t4 之间引脚 2 上出现相对稳定的电压。这时候,该周期就几乎结束了。Q4 通过内部二极管导电并将被开启,但在 t4 到 t5 时间段将会较难开启。就 t4 到 t5 之间的时间段而言,磁化电流在对 Q1 和 Q2 的漏—源电容充电和对 Q3 的栅—漏电容放电之间分流,并对 Q4 栅—漏电容进一步充电。由于这些电容均为非线性,并且 Q3 两端的电压不断上升,因此需要的电流量不会是一个恒量。该电流 Im 来自 Lm,因此引脚 2 上的电压将反映该转换的非线性。在 t5 处,Q1 的漏—源电压从 –2 Vin 爬升至接地电平以上的二极管压降,同时内部主体二极管开始导电。这就是说,再次从引脚 2 流出的任何电流现在都会改变 Cr 的电压,而 Cr 为一个更大容量的电容。因此,这种改变将极其缓慢,相比已经出现的情况其可以忽略不计。这时便能够以一种无损耗方式开启晶体管 Q1。这就完成了无损耗一次侧开关操作。二次侧转换也为相对无损耗,因为通过内部寄生主体二极管在零伏完成了从一个整流器到另一个整流器的电流开关。
结论
总之,对于这部分周期内转换顺序的充分理解可以带来更好的设计。我们已经了解了,通过从转换输出开关到开启钳位开关关闭主开关时,变压器和输出开关中每一个元件所起的作用。
关键字:有源钳位 拓扑结构 转换器
编辑:神话 引用地址:有源钳位拓扑结构关断重置开关的正向转换器
推荐阅读最新更新时间:2023-10-12 20:41
多种ADC的分析比较 — 全方位学习模数转换器
多种ADC的分析比较 A/D转换技术 现在的软件无线电、数字图像采集都需要有高速的A/D采样保证有效性和精度,一般的测控系统也希望在精度上有所突破,人类数字化的浪潮推动了A/D转换器不断变革,而A/D转换器是人类实现数字化的先锋。 逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。下面对各
[电源管理]
高压电源之拓扑结构了解(1)
电源的拓扑结构主要分为非隔离式与隔离式。
在非隔离式中,主要有串联和并联两种,还有一种为极性反转,就不讨论了。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换
并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求
极性反转 输出电压与输入电压的极性相反
设计还是倾向于隔离式的,如果采用非隔离式,肯定不安全。
隔离式的电路结构主要就是加变压器隔离,输入端与输出端电气不相通,完全隔离,通过脉冲变压器的磁偶合方式传递能量。
隔离主要分为:正激变换,反激变换,单管自激,双管自激,推挽变换,半桥变换
[单片机]
麦瑞新型直流-直流转换器支持高功率密度电源设计
模拟、高带宽通信及以太网集成电路(IC)解决方案领域的行业领导者麦瑞半导体公司(Micrel, Inc.)(纳斯达克股票代码:MCRL)今天推出了面向高功率密度直流—直流应用的新型SuperSwitcher II(TM)系列集成MOSFET的降压稳压器产品。新的MIC26xxx系列产品由6款直流—直流降压稳压器组成,它们均采用了麦瑞半导体公司拥有专利的HyperSpeed Control(TM)和HyperLight Load(R)架构,应用领域包括分布式供电系统、通信网络与基础设施及一些工业应用。MIC26601/901/1201 和 MIC26603/903/1203目前已经开始批量供应,千片订量的价格分别为1.58美元/
[电源管理]
模数转换器AD7656与ARM控制器LPC2210的接口设计和实现
引言 在电力系统三相信号处理应用中,常需要同时对A、B、C三相电压和电流信号进行数据采集和处理。如三相功率、电能测量及谐波分析等。美国ADI公司的 AD7656是16位6通道同时采样的模/数转换器,内部含有6个16位A/D转换器,具有转换高、速度快、功耗低、输入模拟信号幅度大、信噪比高等特点。Phmps公司出品的LPC2210,是一款工业级的ARM控制器,处理速度快,性能稳定,与AD7656共同组成的6通道数据采集系统能在很大程度上提高系统的信号采集和处理能力。 1 AD7656的特点及工作原理 1.1 AD7656的特点 图1为AD7656的内部功能框图。 其主要特性为: ◆6个16位独立的ADC通
[单片机]
MAX5973 相冗余DC-DC转换器
MAX5973为相冗余 DC-DC转换器 提供独立的从相操作保护。电源保护功能包括一个用于驱动降压型电源输入的外部n沟道MOSFET的电子断路器控制器和一个用于从相控制器电源的内部3.3V开关。为保护输出总线,在从相输出端采用“理想二极管”控制器驱动外部n沟道MOSFET。从相电源的串行输入、输出数据通过MAX5973进行缓存,避免某一相出现失效时中断与其它相的通信。同样,也对用于相位控制器的差分模拟误差信号进行缓冲。
过压比较器和开关节点监测功能允许MAX5973关闭高边MOSFET短路(或闭锁)的相。
故障状态输出和/FAULTIN输入允许主机设备监测、控制每个MAX5973器件。
MAX5973
[电源管理]
非互补有源钳位可实现超高功率密度反激式电源设计
离线反激式电源在变压器初级侧需要有钳位电路(有时称为缓冲器),以在正常工作期间功率MOSFET开关关断时限制其两端的漏源极电压应力。设计钳位电路时可以采用不同的方法。低成本的无源网络可以有效地实现电压钳位,但在每个开关周期必须耗散钳位能量,这会降低效率。一种改进的方法就是对钳位和功率开关采用互补驱动的有源钳位技术,使得能效得以提高,但它们会对电源的工作模式带来限制(例如,无法工作于CCM工作模式)。为了克服互补有源钳位电路所带来的设计限制,可以采用另外一种更先进的控制技术,即非互补有源钳位。该技术可确保以更具成本效益的方式使用钳位能量。 本文将简要介绍反激式电源中对初级钳位电路的需求。然后比较和对比无源钳位方案、互补有源钳位
[电源管理]
高精度AD转换器AD7864与DSP的接口及应用
近年来模数转换器制造技术发展十分迅速,低成本、高精度和高速度的ADC新产品不断涌现。高速度、高采样速率的12位ADC在各种数据采集系统中的应用已十分常见。随着逐次逼近式A/D技术的发展,A/D在高速高精度的数据采集应用上有更出色的表现。在伺服控制系统中伺服控制器需对采集到的电流及电压信号进行转换,再通过一定的算法来确定被控装置的位置。在这个过程中,两路信号同时采样转换对整个系统的精度有着很重要的意义。AD7864可以直接适应这个需求,它是4通道同时采样的高精度A/D转换器,高速并行输出接口与DSP芯片TMS320F2812直接相连,从而实现电流电压两路信号同时采样转换。 1 AD7864的特点 AD7864是一款高速低
[电源管理]
A/D转换器ADS8320的原理与应用
摘要: ADS9320是美国Burr-Brown公司生产的串行16位微功耗高速A/D转换器。它的采样频率最高可达100kHz,线性度为±0.05%,工作在2.7~5.25V电源电压范围内,非常适合于便携式电池供电系统的使用,文中介绍了ADS8320的功能特点、引脚排列及工作时序,并给出了ADS8320与单片机的接口设计和编程。
关键词: ADS8320
A/D转换 单片机
在便携式仪器设备中,往往要求其数据采集系统不仅具有速度快、精度高的特点,而且还要求其具有供电电压低、体积小以及功耗小等特性。ADS8320是Burr-Brown公司生产的逐次逼近式串行16位微功耗CMOS型高速A/D转
[应用]