高精度AD转换器AD7864与DSP的接口及应用

最新更新时间:2012-04-09来源: 21IC中国电子网关键字:伺服控制系统  AD7864  模数转换器 手机看文章 扫描二维码
随时随地手机看文章
  近年来模数转换器制造技术发展十分迅速,低成本、高精度和高速度的ADC新产品不断涌现。高速度、高采样速率的12位ADC在各种数据采集系统中的应用已十分常见。随着逐次逼近式A/D技术的发展,A/D在高速高精度的数据采集应用上有更出色的表现。在伺服控制系统中伺服控制器需对采集到的电流及电压信号进行转换,再通过一定的算法来确定被控装置的位置。在这个过程中,两路信号同时采样转换对整个系统的精度有着很重要的意义。AD7864可以直接适应这个需求,它是4通道同时采样的高精度A/D转换器,高速并行输出接口与DSP芯片TMS320F2812直接相连,从而实现电流电压两路信号同时采样转换。

1 AD7864的特点
    AD7864是一款高速低功耗四通道同步采样单5 V供电的12位模数转换器。它包含一个1.65μs逐次逼近ADC,四采样保持放大器,2.5 V电压参考,时钟振荡器,信号调理电路和一高速并行接口,它可以同步采样四路通道的输入信号以保持四路模拟输入的相对状态信息。AD78 64可以接受的输入信号范围为:AD7864-1型为±10 V,±5 V;AD7864-2型为0~2.5 V,0~5 V;AD7864-3型为±2.5 V。模拟输入的过电压保护可以允许输入电压分别达到±20 V,+20 V/-1 V,+20/-5 V而对器件不产生损害或影响。通道选择可以通过软件或硬件进行选择。功耗低达90 mW,省电模式下可达20μW。AD7864四通道同时工作时,最大采样率可以高达130 kHz。AD7864具有片内时钟、读写允许逻辑、多种通道选择方式及内部精确的2.5 V参考电压,这使得其与高速处理器的接口变得非常简单。

2 AD7864的工作原理
    AD7864转换后的数据读取有两种方法,即转换中读取数据和转换后读取数据。转换中读取数据是在下一个通道转换结束之前读取前一个通道的数据。转换后读取数据是在全部通道均转换结束后,才读取数据。
    转换中读取数据芯片可以达到最高的数据吞吐率。其具体工作过程如下:一次转换从转换起始信号/CONVST的上升沿开始,4个采样保持器进入保持状态,1.65μs后,得到转换顺序中第一个通道的数据,每个通道的转换都有1.65μs的间隔,/EOC信号的下降沿便是每次转换的结束。BUSY输出信号表示所有选择通道转换都完成。每次/EOC信号变成低电平,执行一次读操作。
    转换后读取数据的具体工作过程如下:当转换起始信号/CONVST上升沿时,4个采样保持器进入保持状态,开始对选择的通道采样。同时,BUSY输出信号被触发为高电平,并在转换过程中一直保持为高,当全部通道转换结束后,才变为低电平。/EOC信号在每一个通道转换结束时均有效。全部通道转换后的数据保存在AD7864内部相应的锁存器中。全部通道转换结束后,当片选信号和读信号有效时,就可以按照转换顺序从数据总线上并行读取数据。

[page]3 DSP与AD7864的接口及应用
    考虑到本系统实际应用中要求的工作电压、转换速度以及系统硬件设计的便利等因素,在硬件系统中选用AD7864-2。DSP选用TI公司的TMS320F2812。
3.1 DSP与AD7864的接口电路
    本系统用DSP扩展两路模数转换通道,分别采集工作电流与工作电压信号(0 V~5 V),经线性光隔HCNR201送入模数转换器ADS7864进行模数转换,对ADS7864的数据采用74LVC4245电平转换(5 V与3.3 V之间)后接入DSP。DSP与AD7864接口电路图见图1。


    线性光隔HCNR201可较好地实现模拟量与数字量的隔离,隔离电压峰值达8 000 V;输出跟随输入变化,线性度达0.01%。
    通过将/HOLDX引脚拉低并保持最少15 ns,可启动一次转换,/BUSY输出端则变成低电平,转换结束后/BUSY变高。将/RD和/CS都拉低,则在转换完成后可将数据从并行输出总线读出。
    ADS7864接入8M的外部时钟,转换时间为1.65μs,相应的数据采集时间为0.35μs,可以达到最高输出速率500 kHz。

3.1 DSP与AD7864的接口电路
    本系统用DSP扩展两路模数转换通道,分别采集工作电流与工作电压信号(0 V~5 V),经线性光隔HCNR201送入模数转换器ADS7864进行模数转换,对ADS7864的数据采用74LVC4245电平转换(5 V与3.3 V之间)后接入DSP。DSP与AD7864接口电路图见图1。


[page]    线性光隔HCNR201可较好地实现模拟量与数字量的隔离,隔离电压峰值达8 000 V;输出跟随输入变化,线性度达0.01%。
    通过将/HOLDX引脚拉低并保持最少15 ns,可启动一次转换,/BUSY输出端则变成低电平,转换结束后/BUSY变高。将/RD和/CS都拉低,则在转换完成后可将数据从并行输出总线读出。
    ADS7864接入8M的外部时钟,转换时间为1.65μs,相应的数据采集时间为0.35μs,可以达到最高输出速率500 kHz。

3.2 模数转换的软件设计
    DSP采样程序设计采用C++语言编程的方式。在本系统中,采用了同时采样模式,同时采样ADCINA0和ADCINA1,当BUSY信号有效时,DSP控制A0和A1通道开始进行数据转换,转换结束后在CS和RD有效时,数据可以通过并行接口读出。


关键字:伺服控制系统  AD7864  模数转换器 编辑:冰封 引用地址:高精度AD转换器AD7864与DSP的接口及应用

上一篇:选择高精度数模转换器
下一篇:D/A转换器模板的设计原则

推荐阅读最新更新时间:2023-10-18 16:36

ADC0832模数转换MSP430单片机程序+电路图
下面是电路图: ADC0832封装图 ADC0832与单片机连接图 ADC0832时序图 程序源码下载: http://www.51hei.com/f/0832430.rar #include msp430f2121.h #define DO (P1IN&BIT7) #define uchar unsigned char #define uint unsigned int /*********************************************** sbit cs=P2^0;
[单片机]
<font color='red'>ADC</font>0832模数转换MSP430单片机程序+电路图
MSP430学习笔记11-八路ADC采集诺基亚5110液晶显示
本程序采用的是八路ADC单次采集的模式,根据配置,在单次的模式下转换完成后ADC12SC会自动复位,因此需要在循环中进行ADC12CTL0 |= ADC12SC;操作,而如果配置成连续采集的模式,只需要在程序开始将ADC12SC置位一次就可以,但是就需要注意当进入中断后如果不手动禁止中断会一直停留在循环中,因此在采集到需要的数据后需要将ADC关闭或者中断使能禁止才能重新回到主函数,这一点需要注意。 八路单次采集的程序如下: /*************************************** 八路AD多路单次采集基亚5110液晶显示 采集模式:多路单次 **************************
[单片机]
PIC单片机adc转换并显示
#INCLUDE P16F877.inc W_TEMP EQU 20H ; 实际上20H、A0H、120H和1A0H STATUS_TEMP EQU 21H ;在体0中建立保护单元 PCLATH_TEMP EQU 22H ;在体0中建立保护单元 ORG 000H GOTO A1 ORG 004H;定时中断入口地址 GOTO ZD01; ORG 0CH ;******************************************** ; 数据表 ;***************************************
[单片机]
STM32F103_ADC单通道电压采集中断读取初始化配置步骤
1. 初始化ADC所用的GPIO。 2. 利用ADC_InitTypeDef 配置ADC相关参数,并初始化。 3. 配置ADC时钟,选择合适的分频因数。 4. 设置ADC通道转换顺序与采样时间。 5. 配置中断向量表,在ADC中断函数中读取采样数据。 6. 使能ADC. 7. 使能软件触发ADC转换。
[单片机]
adc0809应用
adc0809应用 1、模拟信号输入IN0~IN7: IN0-IN7 为八路模拟电压输 入线,加在模拟开关上,工作时采用时分割的方式,轮流 进行A/D 转换。 2、地址输入和控制线 :地址输入和控制线共4 条,其中 ADDA、ADDB 和ADDC 为地址输入线,用于选择IN0-IN7 上哪 一路模拟电压送给比较器进行A/D 转换。ALE 为地址锁存允 许输入线,高电平有效。当ALE 线为高电平时,ADDA、ADDB 和ADDC 三条地址线上地址信号得以锁存,经译码器控制八 路模拟开关通路工作。 3、数字量输出及控制线(11 条):START 为“启动脉冲”输入线,上升沿清零,下降 沿启动ADC0809 工作。EOC
[模拟电子]
<font color='red'>adc</font>0809应用
MSP430单片机的ADC详解
ADC模数转化器是430单片机的重要的片上外设,而且在开发当中也常常需要用到ADC,下面根据使用手册结合我个人的学习感悟,总结一下430的ADC的使用要点。 430的ADC的特点: 1、是一个12位的逐次比较式的ADC,即转化结果为0-4096。 2、独立于CPU,可以通关软件配置自己的时钟源。 3、有8个转化通道,并且可以通关软件配置它的正负参考电压。 4、转化速率 =200KSPS,即每秒转化200K次。 5、有16个12位的转化结果存储单元。 6、转化结果为Nadc。 转化结果和VR+与VR-有关,因此,在使用ADC的时候要配置正确。 7、转化使用的时钟信号有四个: 分别是:MCLK
[单片机]
MSP430单片机的<font color='red'>ADC</font>详解
STM32F103R8t6 FreeRTOS工程adc+flash模拟EEPROM源程序
STM32单片机源程序如下: #include sys.h #include delay.h #include usart.h #include led.h #include FreeRTOS.h #include task.h #include ADC.h #include 74HC595.h #include key.h #include stmflash.h //const u8 TEXT_Buffer ={ 0123456789 }; //任务优先级 #define START_TASK_PRIO 1 //任务堆栈大小 #define START_STK_SIZ
[单片机]
ADuC812中A/D转换器的安全应用
  ADuC812内集成的ADC转换模块,包含了8通道、12位、单电源 A/D转换器。这些A/D转换器由基于电容DAC的常规逐次逼近转换器组成 ,接收的模拟输入范围0~+VREF(+2.5V)。另外,此模块还为用户提供片内基准、校准特性,模块内的所 有部件能方便地通过3个寄存器SFR接口来设置。总之,ADu C812的ADC模块具有与一般ADC芯片相比拟的性能,并且操作简单、可靠性高,采集 速率可高达200 kHz。但是,ADuC812内集成的ADC转换模块有其特殊性,如果应用不适当,轻则 影响ADC的性能,重则电路完全不能工作,甚至烧毁器件。   ADuC812内A/D转换器的2.5V基准电压
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved