高速转换系统,尤其是电信领域的转换系统,允许模数转换器(ADC)输入信号为AC耦合信号(通过利用变压器、电容器或两者的组合)。但对于测试和测量行业而言,前端设计并非如此简单,这是因为除提供AC耦合能力之外,该应用领域通常要求输入信号与DC耦合。设计可提供良好脉冲响应和低失真性能(≥500MHz的DC频率)的有源前端充满挑战。本文就适用于高速数据采集的高性能ADC使用的模拟前端提供几种设计思想和建议。
|
图1:LMH6703频响。 |
使用差分放大器是将高频模拟信号与ADC的输入相连的首选方法。因此,需要选择的第一个器件就是差分输出运算放大器。选择这类器件时,主要有两个考虑因素:增益带宽积和从外部电压设置运算放大器的共模输出电压的能力。这是因为驱动ADC输入的信号放大器将共模输出电压(VCMO)设置在最适合的ADC范围内是很重要的。如果不能满足这些条件,ADC的性能会随着放大器的VCMO和ADC的最佳输入共模电压间不一致程度的增加而大幅降低。
|
图2:二级放大器电路图。 |
宽带差分运算放大器的主要劣势在于其增益通常都很有限,且其增益级别也许在内部已经预设。根据应用的不同,可能需要为设计添加前置放大器,从而满足必须的增益要求。
至于前置放大器应该采用宽带运算放大器,以满足ADC的预期输入频率。对于采样速率高达1GSPS的系统而言,这等于要求过采样系统具有高达500MHz的输入带宽。
对于与大增益(如AV=10)一起工作并能保持这样大的带宽的运算放大器而言,其等同于5GHz增益带宽积(GBW)。由于该架构固有的频响和增益之间的直接折中,大多数的电压反馈放大器都不能满足该要求。然而,电流反馈放大器在这些参数中保持较好的关系,因为其性能通常由运算放大器电路内的反馈电阻值决定。运算放大器LMH6703非常适于在增益设置为1~10的高带宽下工作。该器件可与所选的差分放大器一起使用,从而在高带宽系统(如示波器和数据采集卡)中提供额外的增益要求。该放大器的频响见图1。
|
图3:带有扩展AC信号性能的系统频响。 |
如果增益设置为10且带宽为500MHz,则由图1得到300欧姆的推荐反馈电阻(RF1)。
因此RG1(增益电阻)可选为33欧姆。图2是LMH6703和一个差分放大器一起使用的电路实例。
除了需要具有合适的DC信号通道的固定增益级别的系统,该应用还需要一个AC耦合模式。这是因为DC信号通道通常受到输入放大器所产生的增益带宽的限制。对于数据采集器件或需要很宽的输入带宽和低失真的通信通道而言,我们需要采用AC信号通道。这可将输入频率上限扩展到DC信号通道容量以外。
解决办法有很多种,选择哪种方法在很大程度上取决于最小的输入频率以及所需的高频性能。对于高频下(≥200MHz)的最高AC性能而言,平衡/非平衡变压器为实现单端-差分转换提供了解决方案,因为增加的信号失真很少。其折衷在于平衡/非平衡变压器是有损耗器件,会小幅(-1~2dB)削弱信号,并且它们的低频性能很差。通过使用单刀RF继电器来将单端输出信号从前置放大器切换到差分放大器或平衡/非平衡转换电路中,可以将平衡/非平衡耦合信号通道插入图3所示的电路中。还需要另一个单刀双掷RF继电器来将平衡/非平衡变压器和差分放大器的输出转发到ADC输入中。
|
图4:198 MHz正弦波(由高速差分输出运算放大器发送、由ADC08D500以500 MSPS的速率进行采样)的FFT图。 |
该电路很适于高端测试和测量设备。但是,对于成本敏感的应用,RF信号继电器的成本造成了系统预算的负担,特别是在需要多个通道的情况下。因此低速系统选择可用于AC耦合和DC耦合模式的差分输出运算放大器会很有利,从而去除了平衡/非平衡转换电路。特别适合于该任务的放大器开始逐渐出现,并在逐渐提高带宽和THD方面的性能。
对于8位1GSPS的转换器而言,在500MHz下能够提供-50dB THD值的、最小带宽为1GHz的差分放大器是很适合的。利用可以极大缩短前端设计时间的现成的运算放大器元件,可以从高速ADC获取较好的动态性能。在频率上限处,放大器引起的SINAD损耗不超过3~4dB。图4展示了198MHz输入信号(由宽带差分输出放大器进行缓冲,再由8位ADC以500MSPS的速率进行采样)的FFT。该图表明该放大器在该频率下具有很低的2阶和3阶谐波失真,使得ADC采集到的信号的噪声与失真数值,能与从专用AC耦合信号通道获得的性能相当。
本文小结
放大器的性能在不断得到提升,以提高带宽并降低THD。随着ADC进入GSPS范围,我们就需要能够与这些转换器接口的放大器。通过消除电路通道不仅能够降低系统成本,而且不会牺牲系统的性能,并允许设计者以较低的成本实现较高的性能,同时缩短了前端电路的设计时间。
关键字:转换 ADC 耦合 模拟
编辑: 引用地址:高性能模拟前端中的运算放大器设计
推荐阅读最新更新时间:2023-10-12 20:11
对位操作由别名转换到位的方法
简介:对位操作,由别名转换到位的方法以及一些stm32硬件知识。 Stm32相对于51复杂了太多,之前自己学习方法不对,所以导致花了时间也没什么效果,现在工作了自己也知道该怎么来更好学习了,准备花两周左右看一下stm32中文手册及固件库手册,然后再按照正点原子的不完全手册结合这开发板来学习,也记下学习笔记总结学习、加深记忆。 此次的学习是以STM32F103RBT6作为核心MCU的,其有128k flash、20k sram、2个spi、3个串口、1个usb、1个can、2个12位的adc、rtc以及51个可用的IO口。 笔记一存储器及总线架构 1.Stm32主系统由以下部分构成: ●四个驱动单元:─Cortex??
[单片机]
心电模拟波形发生系统的设计
0 引言
随着现在社会的发展,人们也日益开始关注健康事业的发展,对医学技术的要求也越来越高。现实中很多病例无法通过现实病例学习,更多的医生培养只能通过 模拟 设备进行,心电波形模拟波形发生系统的设计就是其中一个例子。
心电模拟发生系统使用4种不同频率的标准心电波形及用于测试的方波、锯齿波、三角波和正弦波,通过算法拟合出病人的34种异常心电波形(包括成人和儿童的),各周期波形可采用插入不同的延时子程序来实现。提取医院病人的异常心电波形,通过拟合的方法可以模拟和转换除颤后的正常波形,依据此方法设计出一个心电信号发生系统,系统可以采集、模拟任意导联心电信号,并将结果存储到心电数据库供研究分析使用。最后设计出
[医疗电子]
基于电荷耦合器件的雷达视频积累电路
O 引言 对于早期脉冲雷达的信号积累主要依靠显示器余辉特性及雷达操纵员眼和脑的储存能力来完成。由于这种积累加入了许多人为因素,对显示器的余辉性能也提出了严格要求,而且积累效果也是因人而异。因此、近年来,随着大规模集成电路和高速微处理器的发展,在改造老雷达,充分发挥老雷达性能方面人们提出了许多可行的技术方案。雷达信号积累能有效地提高雷达的信噪比,改善雷达的检测能力,达到增加雷达发现概率和探测距离的目的。雷达信号积累分为相干积累和非相干积累。相干积累是指雷达的发射和接收载频有确定的相位关系,积累在中频实现。非相干积累是指雷达的发射和接收载频无确定的相位关系,积累在检波后实现。早期的雷达大部分属于非相干雷达,因此,对这类雷达进行信号积
[测试测量]
飞兆半导体推出业界首款双向逻辑门光耦合器
工业通信设计工程师需要通过通信现场总线发送高速数据,同时避免损坏敏感的控制器、模数转换器或传感器。现有的解决方案是使用两个单通道 光耦合器 ,或是磁性和电容性耦合等其它技术,但是这类方法不能达到所需要的可靠隔离水平和抗电磁干扰水平。
为帮助设计人员应对挑战, 飞兆半导体 公司(Fairchild Semiconductor)开发出业界首款全双工、 双向逻辑门光耦合器 FOD8012,它具有高抗噪能力和经验证的可靠光隔离性能,适用于工业现场总线通信、可编程逻辑控制、伺服控制,以及逆变器、工厂自动化、过程控制和测试测量等应用。
FOD8012支持系统之间的数字信号隔离通信,而且不会与接地环路或危险电压导电
[工业控制]
具有双电流调节环路的 LED 控制器可检测故障 LED 并提供 100:1 的模拟调光
LT3796-1 是一款 DC/DC 控制器,其专为在输出端上调节一个恒定电流或恒定电压而设计,这是驱动 LED 必不可少的要求。该器件独一无二地拥有两个独立的电流检测放大器,而且它的高压侧 PMOS 断接开关驱动器既可以与开关稳压器组合运作 (采用 PWM 引脚),也可以独立运作 (采用 TGEN 引脚)。 这些特点使得 LT3796-1 能够满足某些特殊 LED 应用的需要。例如,在高可靠性照明中,该控制器可被配置为驱动两个并联的 LED 灯串,以便能检测任一灯串中的单个故障 LED (采用另一个灯串为基准)。或者,对于那些要求准确模拟调光的应用,可以对两个电流检测放大器进行扩展以把 LED 电流调节在两个范围:高和低,从而将
[电源管理]
16 位、210Msps ADC 可提供 80dB SNR
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2014 年 4 月 28 日 – 凌力尔特公司 (Linear Technology Corporation) 推出 16 位 210Msps 高性能高速模数转换器 (ADC) LTC2107,该器件适用于高端通信接收器和仪表应用。LTC2107 具备卓越的 AC 性能规格,实现了 80dB SNR 性能,这比其他产品高 4dB,该器件还在基带提供了业界领先的 98dB SFDR。LTC2107 的孔径抖动仅为 45fsRMS,从而能够以卓越的 SNR 性能实现频率高达 500MHz 的直接采样。 LTC2107 的独特功能可简化接收器设计,并改善系统性能。
[模拟电子]
模拟示波器可以做什么,模拟示波器原理解析
什么是模拟示波器 模拟示波器,采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上,屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。工作方式是直接测量信号电压,并且通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压。 模拟示波器特点 模拟示波器天生具备概率显示的特点,由于荧光屏的余辉暂留,不同概率出现的波形事件会以不同亮度出现在屏幕上,但由于波形的再现过程无法停止,某些偶然出现的单次事件因不具备一定的持续性而无法显示。概率显示是一个很有用的功能,比如某个波形上一个不是每次都出现的毛刺,如果用DSO,则这个毛刺的显示会不停的抖动,如果你暂停显示,则可能没有毛刺,也可能有
[测试测量]
Microchip与韩国智能硬件公司IHWK合作开发模拟计算平台,加速边缘AI/ML推理
IHWK采用Microchip的memBrain™ 非易失性内存计算技术并与高校合作,为神经技术设备开发 SoC 处理器 为了适应网络边缘人工智能(AI)计算及相关推理算法的快速发展,韩国智能硬件公司(IHWK)正在为神经技术设备和现场可编程神经形态设备开发神经形态计算平台 。Microchip Technology Inc.(美国微芯科技公司)通过子公司冠捷半导体(SST)参与协助开发,为该平台SuperFlash® memBrain™神经形态存储器解决方案提供评估系统。该解决方案基于Microchip经行业验证的非易失性存储器(NVM)SuperFlash技术并加以优化,可通过模拟内存计算方法为神经网络执行矢量矩阵
[汽车电子]