带你了解高速转换器应用下的数字数据输出

发布者:EEWorld资讯最新更新时间:2020-10-28 来源: EEWORLD作者: Jonathan Harris,ADI产品应用工程师 关键字:高速转换器  ADI 手机看文章 扫描二维码
随时随地手机看文章

摘要

 

设计人员有各种模数转换器(ADC)可以选择,数字数据输出类型是选择过程中需要考虑的一项重要参数。目前,高速转换器三种最常用的数字输出是互补金属氧化物半导体(CMOS)、低压差分信号(LVDS)和电流模式逻辑(CML)。ADC中每种数字输出类型都各有优劣,设计人员应根据特定应用仔细考虑。这些因素取决于ADC的采样速率和分辨率、输出数据速率、系统设计的电源要求,以及其他因素。本文将讨论每种输出类型的电气规格,及其适合特定应用的具体特点。我们将从物理实现、效率以及最适合每种类型的应用这些方面来对比这些不同类型的输出。

 

CMOS数字输出驱动器

 

在采样速率低于200 MSPS的ADC中,CMOS是很常见的数字输出。典型的CMOS驱动器由两个晶体管(一个NMOS和一个PMOS)组成,连接在电源(VDD)和地之间,如图1a所示。这种结构会导致输出反转,因此,可以采用图1b所示的背对背结构作为替代方法,避免输出反转。输出为低阻抗时,CMOS输出驱动器的输入为高阻抗。在驱动器的输入端,由于栅极与导电材料之间经栅极氧化层隔离,两个CMOS晶体管的栅极阻抗极高。输入端阻抗范围可达kΩ至MΩ级。在驱动器输出端,阻抗由漏电流ID控制,该电流通常较小。此时,阻抗通常小于几百Ω。CMOS的电平摆幅大约在VDD和地之间,因此可能会很大,具体取决于VDD幅度。


image.png

图1.典型CMOS数字输出驱动器

 

由于输入阻抗较高,输出阻抗较低,CMOS的优势之一在于通常可以用一个输出驱动多个CMOS输入。CMOS的另一个优势是低静态电流。唯一出现较大电流的情况是CMOS驱动器上发生切换时。无论驱动器处于低电平(拉至地)还是高电平(拉至VDD),驱动器中的电流都极小。但是,当驱动器从低电平切换到高电平或从高电平切换到低电平时,VDD与地之间会暂时出现低阻抗路径。该瞬态电流是转换器速度超过200 MSPS时,输出驱动器采用其他技术的主要原因。

 

转换器的每一位也都需要CMOS驱动器。如果转换器有14位,就需要14个CMOS输出驱动器来传输这些位。一般会有一个以上的转换器置于单个封装中,常见为八个。采用CMOS技术时,意味着数据输出需要高达112个输出引脚。从封装角度来看,这不太可能实现,而且还会产生高功耗,并使电路板布局变得更加复杂。为了解决这些问题,我们引入了使用LVDS的接口。

 

LVDS数字输出驱动器

 

与CMOS技术相比,LVDS具备一些明显优势。它可以在低电压信号(约350 mV)下工作,并且为差分而非单端。低压摆幅具有较快的切换时间,可以减少EMI问题。差分这一特性可以带来共模抑制的好处。这意味着耦合到信号的噪声对两个信号路径均为共模,大部分都可被差分接收器消除。LVDS中的阻抗必须更加严格控制。在LVDS中,负载阻抗应约为100 Ω,通常通过LVDS接收器上的并联端接电阻实现。此外,LVDS信号还应采用受控阻抗传输线进行传输。差分阻抗保持在100 Ω时,所需的单端阻抗为50 Ω。图2所示为典型LVDS输出驱动器。

image.png 

如图2中LVDS输出驱动器拓扑结构所示,电路工作时输出电源会产生固定的直流负载电流。这可以避免输出逻辑状态跃迁时典型CMOS输出驱动器中出现的电流尖峰。电路中的标称源电流/吸电流设为3.5 mA,使得端接电阻100 Ω时典型输出电压摆幅为350 mV。电路的共模电平通常设为1.2 V,兼容3.3 V、2.5V和1.8 V电源电压。

 

有两种书面标准可用来定义LVDS接口。最常用的标准是ANSI/TIA/EIA-644规格,标题为《低压差分信号(LVDS)接口电路的电气特性》。另一种是IEEE标准1596.3,标题为《可扩展一致性接口(SCI)的低压差分信号IEEE标准》。

 

LVDS需要特别注意信号路由的物理布局,但在采样速率达到200 MSPS或更高时可以为转换器提供许多优势。LVDS的恒定电流使得可以支持许多输出,无需CMOS要求的大量电流吸取。此外,LVDS还能以双倍数据速率(DDR)模式工作,其中两个数据位可以通过同一个LVDS输出驱动器。与CMOS相比,可以减少一半的引脚数。此外,还降低了等量数据输出的功耗。对转换器数据输出而言,LVDS确实相比CMOS具有诸多优势,但也和CMOS一样存在一些限制。随着转换器分辨率的增加,LVDS接口所需的数据输出量会变得更难针对PCB布局进行管理。另外,转换器的采样率最终会使接口所需的数据速率超出LVDS的能力。

 

CML输出驱动器

 

转换器数字输出接口的最新趋势是使用具有电流模式逻辑(CML)输出驱动器的串行接口。通常,高分辨率(≥14位)、高速(≥200 Msps)和需要小型封装与低功耗的转换器会使用这些类型的驱动器。CML输出驱动器用在JESD204接口,这种接口目前用于最新转换器。采用具有JESD204接口的CML驱动器后,转换器输出端的数据速率可达12 Gbps(当前版本JESD204B规格)。此外,需要的输出引脚数也会大幅减少。时钟内置于8b/10b编码数据流,因此无需传输独立时钟信号。数据输出引脚数量也得以减少,最少只需两个。随着转换器的分辨率、速度和通道数的增加,数据输出引脚数可能会相应调整,以满足所需的更高吞吐量。但是,由于使用CML驱动器采用的接口通常是串行接口,引脚数的增加与CMOS或LVDS相比要少得多(在CMOS或LVDS中传输的数据是并行数据,需要的引脚数多得多)。

 

CML驱动器用于串行数据接口,因此,所需引脚数要少得多。图3所示为用于具有JESD204接口或类似数据输出的转换器的典型CML驱动器。该图显示了CML驱动器典型架构的一般情况。其显示可选源终端电阻共模电压。电路的输入可将开关驱动至电流源,电流源则将适当的逻辑值驱动至两个输出端。

image.png 

CML驱动器类似于LVDS驱动器,以恒定电流模式工作。这也使得CML驱动器在功耗方面具备一定优势。在恒定电流模式下工作需要较少的输出引脚,总功耗会降低。与LVDS一样,CML也需要负载端接、单端阻抗为50 Ω的受控阻抗传输线路,以及100 Ω的差分阻抗。驱动器本身也可能具有如图3所示的端接,对因高带宽信号灵敏度引起的信号反射有所帮助。对采用JESD204标准的转换器而言,差分和共模电平均存在不同规格,具体取决于工作速度。工作速度高达6.375 Gbps,差分电平标称值为800 mV,共模电平约为1.0 V。在高于6.375 Gbps且低于12.5 Gbps的速度下工作时,差分电平额定值为400 mV,共模电平仍约为1.0 V。随着转换器速度和分辨率增加,CML输出需要合适类型的驱动器提供必要速度,以满足各种应用中转换器的技术需求。

 

数字时序——需要注意的事项

 

每种数字输出驱动器都有时序关系,需要密切监控。由于CMOS和LVDS有多种数据输出,因此必须注意信号的路由路径,以尽量减小偏斜。如果差别过大,可能就无法在接收器上实现合适的时序。此外,时钟信号也需要通过路由传输,并与数据输出保持一致。时钟输出和数据输出之间的路由路径也必须格外注意,以确保偏斜不会太大。

 

在采用JESD204接口的CML中,还必须注意数字输出之间的路由路径。需要管理的数据输出大大减少,因此,这一任务比较容易完成,但也不能完全忽略。这种情况下,由于时钟内置于数据中,因此无需担心数据输出和时钟输出之间的时序偏斜。但是,必须注意,接收器中要有合适的时钟和数据恢复(CDR)电路。

 

除了偏斜之外,还必须关注CMOS和LVDS的建立和保持时间。数据输出必须在时钟边沿跃迁之前的充足时间内驱动到适当的逻辑状态,并且必须在时钟边沿跃迁之后以这种逻辑状态维持充足时间。这可能会受到数据输出和时钟输出之间偏斜的影响,因此,保持良好的时序关系非常重要。由于具有较低信号摆幅和差分信号,LVDS相比CMOS具有一定优势。和CMOS驱动器一样切换逻辑状态时,LVDS输出驱动器无需将这样的大信号驱动至各种不同输出,也不会从电源吸取大量电流。因此,它在切换逻辑状态时不太可能会出现问题。如果有许多CMOS驱动器同时切换,电源电压可能会下降,将正确的逻辑值驱动到接收器时会出现问题。LVDS驱动器会保持在恒定电流水平,这一特别问题就不会发生。此外,由于采用了差分信号,LVDS驱动器本身对共模噪声的耐受能力也较强。CML驱动器具有和LVDS同样的优势。这些驱动器也有恒定水平的电流,但和LVDS不同的是,由于数据为串行,所需电流值较小。此外,由于也采用了差分信号,CML驱动器同样对共模噪声具有良好的耐受能力。

 

随着转换器技术的发展,速度和分辨率不断增加,数字输出驱动器也不断演变发展,以满足数据传输需求。随着转换器中的数字输出接口转换为串行数据传输,CML输出越来越普及。但是,目前的设计中仍然会用到CMOS和LVDS数字输出。每种数字输出都有最适合的应用。每种输出都面临着挑战,必须考虑到一些设计问题,且各有所长。在采样速度小于200 Msps的转换器中,CMOS仍然是一种合适的技术。当采样速率增加到200 MSPS以上时,与CMOS相比,LVDS在许多应用中更加可行。为了进一步增加效率、降低功耗、减小封装尺寸,CML驱动器可与JESD204之类的串行数据接口配合使用。

 

 


关键字:高速转换器  ADI 引用地址:带你了解高速转换器应用下的数字数据输出

上一篇:使用高速数据转换器可实现系统的快速开发
下一篇:如何选择DC-DC转换器和LED驱动器,消除PCB空间受限困扰

推荐阅读最新更新时间:2024-11-11 15:51

ADI水质分析监测仪器解决方案如何助力实现健康智能生活
如何用科技改善我们的生活质量呢?当我们呼吸着弥漫着雾霾的空气,喝着被净化后的重度污染的饮用水,脚踩着渗透了重金属的土壤,不禁会想到这样一个问题,科技已经使我们的生活更加便捷,又如何才能生活更加的健康呢? 科技企业一直在试图采用自己的方式为我们营造更加便捷,更加健康的生活环境。 上个月,一直致力于智能家居开发的小米,最近推出了一款小米净水器,1299元的售价,其净化能力达到99%以上,净化速度达到400加仑,完全做到了即用即出。 但是像小米这样能够涉足智能生活的方方面面,推出一整套产品,搭建完整生态系统的企业毕竟是少数,更多是那些想要做单品净水器,因缺乏技术,缺乏资源而不得的奋斗者们。 小米将实时监测TDS水质这一
[模拟电子]
<font color='red'>ADI</font>水质分析监测仪器解决方案如何助力实现健康智能生活
大联大世平集团推出高性能太阳能微型逆变器方案
2015年2月5日,致力于亚太地区市场的领先电子元器件分销商---大联大控股宣布,其旗下世平推出分别基于ADI和TI为主芯片的两套高性能太阳能微型逆变器方案。 根据Navigant Research的报告指出,微型逆变器将是光伏领域最具有颠覆性的技术之一,这对于可再生能源的持续整合将是至关重要的。而IHS更是预测到2017年,微型逆变器的全球市场规模将有望实现四倍以上的增长,中国市场的增长将会更加可观。为了更好的契合市场,大联大世平特别推出基于国际大厂芯片的两套太阳能微型逆变器解决方案,以期树立微型逆变器领域高性能、高可靠性的标杆。 图示1-大联大世平太阳能微型逆变器方案框图 大联大世平
[电源管理]
大联大世平集团推出高性能太阳能微型逆变器方案
ADI公司收购Innovasic 目标工业物联网
大力扩充公司确定性以太网技术和专业知识,为高度同步的工业自动化网络及工业物联网提供强大的实时连接 Analog Devices, Inc. (NASDAQ:ADI) 今日宣布收购Innovasic Inc. -- 确定性以太网半导体和软件解决方案的领先供应商。此次收购完成后,ADI公司可掌握一整套多协议工业以太网解决方案,并为适用于工业自动化和工业物联网(IoT)的ADI智能自动化解决方案产品组合增添关键的配套技术。 目前,工业自动化市场正逐步从串行现场总线向以太网连接转变,同时,工业物联网日趋普及,敏感的工业自动化应用亟需高度可靠的实时以太网连接。ADI公司收购Innovasic后,可立即为客户提供一整套面向工业以
[工业控制]
ADI公司推出集成数字电源监控功能的+48V热插拔控制器
Analog Devices, Inc. (ADI)近日宣布推出ADM1272,这是一款创新的+ 48V热插拔控制器和PMBus™电源监控器。ADM1272专为高达80V的高压系统控制而设计,在关键任务系统(如服务器和通信设备)中提供可靠的接插板保护。先进的系统控制和电路板电源监控可以提供卓越的保护,防止系统故障以及从高达120V的瞬变电压进行系统复位,从而最大限度地减少系统停机时间并提高系统在所有条件下的可用性。ADM1272的自适应安全工作区(SOA)保护功能大幅提高了整体的系统可靠性和MOSFET保护。有了SOA保护功能,就能够使用比传统热插拔控制器解决方案外形更小、成本更低的MOSFET。其他性能优化功能包括PMBus数字
[电源管理]
<font color='red'>ADI</font>公司推出集成数字电源监控功能的+48V热插拔控制器
用于地震学和能源勘探应用的低噪声、低功耗DAQ解决方案
精密数据采集(DAQ)系统在工业应用中深受欢迎。一些DAQ应用中需要低功耗和超低噪声。一个例子是地震传感器相关应用,从地震数据中可以提取大量信息,这些信息可用于广泛的应用,例如结构健康监测、地球物理研究、石油勘探甚至工业和家庭安全1。 DAQ信号链要求 地震检波器是将地振动信号转换成电信号的机电转换装置,适用于高分辨率地震勘探。它们沿着阵列被植入地面,用于测量地震波从非连续面(如层面)反射回来的时间,如图1所示。 图1.地震源和检波器阵列 要捕获地震检波器的小输出信号,必须构建高灵敏度DAQ信号链以进行数据分析。总均方根噪声应为1.0 μV rms,有限的平坦低通带宽范围为300 Hz至400 Hz左右,同时
[模拟电子]
用于地震学和能源勘探应用的低噪声、低功耗DAQ解决方案
ADI为无人驾驶添利器,买下这个技术果然很无敌
亚德诺半导体(Analog Devices, Inc.; ADI )宣布 收购 美国Vescent Photonics公司的固态雷射波束转向技术。   Vescent的非机械雷射波束转向技术新颖,可以进一步增强整合光达(LIDAR)系统的性能,克服目前庞大的机械式产品在可靠性、尺寸和成本等方面的诸多重大缺陷。   Vescent Photonics公司为私人企业,创建于2002年,专注开发制造精密雷射控制所需的光电产品、可调雷射器和电子元件。收购波束转向技术,将有助于拥有20年汽车安全技术研发经验的ADI巩固其于汽车安全系统技术领域的地位,更有利于研发下一代ADAS和自动驾驶应用。   目前,ADAS系统必须依靠摄影机、毫米波雷达
[嵌入式]
抓住JESD204B接口功能的关键问题
Grasp the Critical Issues for a Functioning JESD204B Interface 抓住JESD204B接口功能的关键问题 JESD204B是最近批准的JEDEC标准,用于转换器与数字处理器件之间的串行数据接口。它是第三代标准,解决了先前版本的一些缺陷。该接口的优势包括:数据接口路由所需电路板空间更少,建立与保持时序要求更低,以及转换器和逻辑器件的封装更小。多家供应商的新型模拟/数字转换器采用此接口,例如ADI公司的 AD9250 。 与现有接口格式和协议相比,JESD204B接口更复杂、更微妙,必须克服一些困难才能实现其优势。像任何其他标准一样,要使该接口比单倍数据速率或双
[模拟电子]
抓住JESD204B接口功能的关键问题
了解ADC信号链中放大器噪声对总噪声的贡献
简介 当模数转换器(ADC)的模拟输入被驱动至额定满量程输入电压时,ADC提供最佳性能。但在许多应用中,最大可用信号与额定电压不同,可能需要调整。用于满足这一要求的器件之一是可变增益放大器(VGA)。了解VGA如何影响ADC的性能,将有助于优化整个信号链的性能。 本文分析一个采用双通道16位、125/105/80 MSPS、流水线ADCAD9268和超低失真中频VGAAD8375 的电路中的噪声。信号链包括一个VGA(在+6 dB增益设置下使用)、一个五阶巴特沃兹低通滤波器(–3 dB滚降频率为100 MHz)和ADC。本文将给出放大器和滤波器的噪声计算,因为这些噪声决定ADC在目标频段内的动态性能。 问题 许多采用高速ADC
[模拟电子]
了解ADC信号链中放大器噪声对总噪声的贡献
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved