如何测量运算放大器的输入电容以尽可能降低噪声

发布者:EE小广播最新更新时间:2023-01-30 来源: EEWORLD作者: ADI现场应用工程师Thomas Brand关键字:运算放大器  输入电容  噪声  ADI 手机看文章 扫描二维码
随时随地手机看文章

如何测量运算放大器的输入电容以尽可能降低噪声

问题:


在测量运算放大器输入电容时,应关注哪些方面?


答案:


在ADI看来,必须确保测量精度不受PCB或测试装置的杂散电容和电感影响。您可以通过使用低电容探头、在PCB上使用短连接线,并且避免在信号走线下大面积铺地来尽可能规避这些问题。

 

image.png


如今,运算放大器已被广泛用于各种电子电路中。它们用于小电压的放大,以进一步执行信号处理。烟雾探测器、光电二极管跨阻放大器、医疗器械,甚至工业控制系统等应用都需要尽可能低的运算放大器输入电容,因为这会影响噪声增益(Noise Gain),进而影响系统的稳定性,特别是具有高频率和高增益的系统。


为了尽可能提高相应电路的精度,需要知道运算放大器的输入电容的大小。但是,数据手册中通常不提供这一信息,所以需要单独确定。这可能很困难,因为在许多情况下,输入电容都只有几pF。


ADI在表1列出了几个不同的运算放大器示例,及其各自的输入电容值。


表1.不同的运算放大器及其输入电容值

image.png



如何确定输入电容


图1显示了确定运算放大器输入电容的一种简单方法,即增加一个电阻,与运算放大器输入串联(RSERIES)。这会形成一阶低通滤波器,其频率响应可由网络分析仪进行记录。我们可以根据频率响应计算出输入电容。电阻RSERIES一般在10kΩ至100kΩ之间。


 image.png

图1.在运算放大器输入端增加串联电阻之后,可以测量运算放大器的输入电容。


在记录频率响应时,必须确保测量精度不受PCB或测试设备的杂散电容和杂散电感影响。


为提高测量分辨率,应尽可能降低杂散电容。建议使用低电容(<1 pF) FET探头。


PCB对地电容应尽可能低,这可以通过确保信号走线和串联电阻下方没有接地层来实现。


此外,应使用尽可能短的线路和(电阻)引线,以规避额外的误差源,例如串联电感和寄生电感。


图2显示一种可能的测试配置,其中包含网络分析仪和功率分配器

功率分配器负责分割信号。信号1:1原样馈送至网络分析仪的输入端,在通过插入的低通滤波器之后,到达运算放大器的输入端。然后,网络分析仪根据这两个信号之间的差值产生频率响应。


 image.png

图2.用于确定运算放大器输入电容的测试设置。


要进行测量,需要确定杂散电容CSTRAY。首先,对没有安装运算放大器的电路板应用该信号进行测量。根据得到的波特图,使用公式1计算CSTRAY:

 image.png


f1(–3dB)是使用网络分析仪,在不带运算放大器时测量得出的–3dB转角频率,RTH1与插入的串联电阻(RSERIES)、输入端接电阻(50Ω)和功率分配器(Thévenin同等产品)的50Ω源阻抗成函数关系:

 image.png


然后,将运算放大器安装到PCB上。


由于PCB的杂散电容与运算放大器的输入电容并联,所以在公式1中加入CIN,如公式3所示:

 image.png


其中,f2(–3dB)是使用网络分析仪,在带有运算放大器时测量得出的–3dB转角频率,RTH2与插入的串联电阻、输入端接电阻(50Ω)、功率分配器的输出电阻(50Ω),以及运算放大器(RCM)的共模输入阻抗成函数关系:

 image.png


一般来说,对于具有CMOS输入的运算放大器,RSERIES << RCM。所以,RTH2 ≈ RTH1,公式3可以改写成公式5:

 image.png


然后,可以使用公式1和公式5确定运算放大器的输入电容。


结论


运算放大器的输入电容是很难测量的。它通常只有几pF,并且测试设置中的寄生效应会扭曲测量结果。不过,ADI认为可以使用小型测试装置,以及由网络分析仪和功率分配器构成的适用测量设备轻松确定输入电容。首先,确定杂散电容(测试设置中的误差电容),然后,通过频率响应确定运算放大器电路的组合电容(误差电容和输入电容)。根据上述公式,就可以计算运算放大器的实际输入电容了。


关于ADI公司


Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。


关于作者


Thomas Brand于2015年加入德国慕尼黑的ADI公司,当时他还在攻读硕士。毕业后,他参加了ADI公司的培训生项目。2017年,他成为一名现场应用工程师。Thomas为中欧的大型工业客户提供支持,并专注于工业以太网领域。他毕业于德国莫斯巴赫的联合教育大学电气工程专业,之后在德国康斯坦茨应用科学大学获得国际销售硕士学位。


关键字:运算放大器  输入电容  噪声  ADI 引用地址:如何测量运算放大器的输入电容以尽可能降低噪声

上一篇:意法半导体全面提升工业和车用运放性能
下一篇:搞定电路设计之防过热的USB供电433.92MHz RF功率放大器

推荐阅读最新更新时间:2024-11-09 11:42

智者避危于无形,如何让您的电子系统实现可靠的安全认证?
“盖明者远见于未萌,而智者避危于无形,祸固多藏于隐微而发于人之所忽者也。” 两千年前大辞赋家司马相如提醒汉武帝注意安全的劝谏语,对于世界日趋多元纷繁的今天,这样的安全提醒依然言之谆谆。在信息化与数字化的时代,安全的概念已经远超两千年前的人身安危与财产安全的范畴。信息与数据的安全,成了涉及现代社会方方面面的更广泛安全主题。 电子系统正在为广泛的应用带来创新,如物联网应用、自动驾驶、视觉技术、移动支付、人工智能等,与这些系统相关的安全威胁也在不断增加,针对电子设备的安全攻击事件层出不穷。“越来越多的应用中需要增加前所未有的加密及防篡改措施。新一代安全标准的出现加速了对安全认证的需求,而对尺寸、成本的苛刻要求进一步增大了设计难度。”
[物联网]
智者避危于无形,如何让您的电子系统实现可靠的安全认证?
面向高精度测量 如何实现节能模数转换
电气工程中的一个典型应用是通过传感器记录物理量并转发给微控制器进行深入处理 。此过程需要使用ADC将模拟传感器输出信号转换为数字信号。ADI在本文介绍了一种用于高精度测量应用的低功耗模数转换器(ADC)解决方案,即SAR-ADC或Σ-Δ ADC。因为在低功耗应用中,节省的每一毫瓦都将是有用的。 使用Σ-Δ ADC进行信号转换 与SAR-ADC相比,Σ-Δ ADC有一些优势。首先,它们通常具有更高的分辨率。此外,它们通常与可编程增益放大器(PGA)和通用输入/输出(GPIO)集成。因此,Σ-Δ ADC非常适合直流和低频高精度信号调理和测量应用。但是,由于固定过采样速率较高,Σ-Δ ADC通常功耗更高,在电池供电的应用中,会
[模拟电子]
面向高精度测量 如何实现节能模数转换
利用 ADC EV10AQ190 的交叉点开关特性和顶尖的低频噪声性能实现软件定义仪器 Moku:Pro
利用 ADC EV10AQ190 的交叉点开关特性和顶尖的低频噪声性能实现软件定义仪器 Moku:Pro Moku:Pro 是一个可扩展的高性能测试解决方案,用于开发和验证下一代设备和系统。它实现了包含 4 个输入通道和 4 个输出通道的软件定义仪器,具有高度的灵活 性和可重构性。Teledyne e2v 的高速高精度数据转换器 EV10AQ190 是这个平台的最佳选择 , 它 为Moku:Pro 提供了一流的数据采集性能。它独特的交叉点开关使系统能动态切换通道的使用模式,并提供高速交织数据;其优秀的低频噪声特性帮助 Moku:Pro 利用先进的 ADC 技术实现业内领先的噪声性能。 MOKU:PRO:一个面向最严苛的研究
[模拟电子]
利用 ADC EV10AQ190 的交叉点开关特性和顶尖的低频<font color='red'>噪声</font>性能实现软件定义仪器 Moku:Pro
什么数字万用表可以测量噪声
  数字万用表是测量电信号的有力助手。虽说是“万”用表,其实常见的功能只有测量电压、电流、电阻。电压、电流还包括有交直流档。除此之外,部分万用表包含有测量电感、电容、通断、二极管导通电压、三极管电流放大系数、计数和频率、温度等。 常见到的手持式和台式万用表   随机噪声信号在电路中很常见到。有的时候需要消除它,但有的时候也可以利用它完成测量。比如在测试放大器的有效带宽、对系统进行辨识、确定系统所受到的干扰来源、以及测量一些基础物理量等。   使用数字万用表是否可以测量随机噪声大小呢?   在分析之前,可以先对比几种不同的万用表对随机噪声测量的结果。   使用DS345数字信号源产生有效值为1V的随机噪声作为被测
[测试测量]
什么数字万用表可以测量<font color='red'>噪声</font>?
光学液体分析原型制作平台为实时高效水体监测开辟新通路
光学液体分析原型制作平台为实时高效水体监测开辟新通路 实时监控环境对于改善全球可持续发展至关重要。能够快速分析样本,并确认问题,是快速解决问题,尽可能减少对生态系统影响的关键。这种无处不在的实时传感应用改变了对液体传感器的需求,要求尺寸更小、更可靠、功耗更低,同时可提供高质量结果。随着行业不断发展,人们急需能够满足从环境水域到过程控制等各种应用需求的便携式检测智能平台。对此需求,本文将介绍一种便携式实时检测解决方案和原型制作平台,可快速实施液体检测。 一种常见的液体分析技术 监测液体的方法有很多种,目的都是测量样品中未知参数的浓度,如pH、荧光或浊度。一种常见的方法是通过光学技术评估液体,因为它具有非介入性,可提供稳定
[测试测量]
光学液体分析原型制作平台为实时高效水体监测开辟新通路
意法半导体推出200mA双运算放大器,可驱动高耗电的工业和汽车负载
2022 年 8 月 2 日,中国 – 意法半导体的TSB582双路高输出放大器可以简化工业电机、阀门、旋转变压器和汽车电动转向系统、自动泊车等感性和低阻性负载驱动电路。 TSB582 采用 4V-36V 电源,由两个运算放大器(运放)组成,每个运放的灌电流/拉电流最高200mA,可以桥接直连负载,允许用一个 TSB582 替换两个单通道功率运放或由分立元件构建的大电流驱动器。 在同一个封装内集成两个运放,TSB582 能够节省高达 50% 的电路板空间并降低物料清单成本。 TSB582 有工业级和汽车级两个版本,工业版本适用于控制机器人运动和位置、传送带和伺服电机,汽车应用包括电动转向、电驱电机等电机转子位置检测
[模拟电子]
意法半导体推出200mA双<font color='red'>运算放大器</font>,可驱动高耗电的工业和汽车负载
为应用选择合适的射频放大器指南
A Guide for Choosing the Right RF Amplifier for Your Application 为应用选择合适的射频放大器指南 问题: 如何选择合适的射频放大器,不同射频放大器之间有何区别? 答案: 为具体应用选择合适的射频放大器时,应考虑增益、噪声、带宽和效率等特性。 本文将评述最常用的射频放大器,并说明增益、噪声、带宽、效率和各种功能特性如何影响不同应用的放大器选择。 射频放大器有多种类型和形式,旨在满足不同的应用场景。然而,为目标应用选择合适的射频放大器时,种类如此繁多的射频放大器使得这项工作变得并不轻松。虽然几乎所有射频放大器的关键特性都是其增益,但这并
[模拟电子]
为应用选择合适的射频放大器指南
简化隔离式软件可配置I/O通道设计的高集成度、系统级方法
为过程控制、工厂自动化、楼宇控制系统等工业应用设计系统级隔离式I/O解决方案时,有许多方面需要考虑,其中包括功耗、数据隔离和外形尺寸。 图1显示了系统解决方案,其在隔离式单通道软件可配置I/O解决方案中使用AD74115H和ADP1034,解决了电源、隔离和面积挑战。 通过将ADP1034的电源和数据隔离功能与AD74115H的软件可配置能力相结合,可以仅使用两个IC和非常少的外部电路来设计一个隔离式单通道I/O系统。 图1.ADP1034和AD74115H电路图 系统级解决方案 ADP1034是一款高性能隔离式电源管理单元,包含一个隔离反激式稳压器、一个反相降压升压调节器和一个降压调节器,提供三个隔离式电源轨并集
[模拟电子]
简化隔离式软件可配置I/O通道设计的高集成度、系统级方法
小广播
最新模拟电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved