自适用控制A/D转换编码电路的设计与应用

最新更新时间:2006-05-07来源: 国外电子元器件关键字:自动增益控制  自适应控制  误差补偿  微处理器 手机看文章 扫描二维码
随时随地手机看文章

    摘要:本文介绍了一种自适应控制A/D转换编码电路,着重分析了调理电路自动增益控制、误差补偿与A/D转换编码原理,探讨了该电路的局限性,给出了自适应控制A/D转换编码电路设计方案及其与微处理器的接口应用。

    在数据采集系统中,通常需要尽量将模拟信号子样放大到接近A/D转换电路的满度值,以充分利用A/D转换器的分辨能力。然而,在某些应用领域,一方面信号子样有效幅值输入范围较小,另一方面信号又极其微弱,因此,一般需要调理电路具备100dB以上的信号放大能力,而运放和采样装置引入的失调可能高达100~200μV,同时还具有一定的时、热漂移。而在某些应用领域,信号子样有效幅值输入范围又可能较大。显然,固定增益信号调理电路无法兼顾对上述两类信号子样的高分辨率A/D转换。为提高信号调理电路对信号的自适应能力,设计者往往希望系统能根据信号的强弱自动调整增益并实现高保真信号调理。本文介绍一种采用自适应控制A/D转换编码电路来实现信号自适应调理的方法。该方法同时具有自动增益控制、失调与温漂自动补偿和A/D转换编码控制等功能。

1 自动控制循环放大及误差补偿

    利用图1所示电路可直接完成对±10μV~±5V信号的自动增益放大并实现12位A/D转换编码,并在信号调理过程中使增益随信号的强弱自动调节,运放失调误差可被自动补偿,从而实现极高的信噪比。该电路主要由模拟开关S1~S10、运放OP1与OP2(主放大器、精密电平比较器)、比较器OP3与OP4、精密电阻R1~R3及Rf、采样保持器A1与A2构成。OP1与OP2选择低漂移运放,OP3、OP4为普通集电极开路输出比较器。电路工作过程为信号及误差采样、自动增益控制循环放大和循环编码A/D转换3个阶段。

1.1 信号及误差采样

    一般放大电路主要存在三个误差:主运放OP1的失调误差E0、采保器A1与A2的误差E1和E2。E0、E1及E2均折算于OP1同相输入端。

    在第1采样周期,开关S1、S4及S10闭合,其它断开。电路完成对E0、E1的采样。OP1同相组态增益K1=1+Rf/R1=7/4。此周期结束后,采保器A1的输出电压为:

    Vp=(7/4)E0+E1

    在第2采样周期,开关S2、S7及S11闭合,其它断开。OP1同相组态增益K2=1+Rf/R2=2。这时第一采样周期输出Vp被放大,同时再计入E0、E1的影响,采保器A2的输出电压为:

    VQ=2Vp+2E0+E2

    输入信号采样过程在第3周期内完成。此时,开关S3、S5及S10闭合,其它断开。对误差电压VQ而言,OP1呈反相组态,反相增益K3=-(Rf/R3)=-(2/3)。对信号子样VE,OP1呈同相组态,同相增益K4=1-K3=5/3。此周期结束后,电容C1上的电压为:

    VM=(5/3)VE+(5/3)E0-(2/3)VQ

1.2 自动增益控制循环放大与误差补偿

    前三个周期完成对输入信号VE及三个误差信号E0、E1、E2的采集,并将其结果保存于电容C1中。从第4周期开始,将通过对电子开关S6、S10、S7、S11的交替切换完成对输入电压的循环放大。在第4、6、8、…等周期,S7、S11闭合,在第5、7、9、…等周期,S6、S10闭合。在整个循环放大过程中,S2一直闭合,主运放OP1的同相组态增益为2。电子开关经n次交替切换后,原输入信号子样被放大(5/3)×2 n倍。由于完成一次循环放大的时间很短,因而时漂可以忽略。在对信号进行循环放大的同时,误差也参加循环,正是前三个周期对误差、信号的特殊采集方法确保了失调误差在各次循环放大过程中的自动补偿,从而使之不会随信号被循环放大。其放大过程如下:

    第3周期结束时(第n=0次循环放大),A1输出电压为:

    V3=VM+E1

    =(5/3)VE-2E0-(1/3)E1-(2/3)E2

    第4周期结束时(第n=1次循环放大),A2输出电压为:

    V4=2V3+2E0+E2

    =(5/3)×2 1 VE-2E0-(2/3)E1-(1/3)E2

    第5周期结束时(第n=2次循环放大),A1输出电压为:

    V5=2V4+2E0+E1

    =(5/3)×2 2 VE-2E0-(1/3)E1-(2/3)E2

    依此类推,经n次循环放大后,有效信号达(5/3)×2 n VE,而误差一直为-2E0-(1/3)E1-(2/3)E2或-2E0-(2/3)E1-(1/3)E2,仍然是信号采样周期结束时所获得的初始误差采样值。经n次循环放大后,信号被放大到满刻度的1/2~1倍。其值已达数伏之高,而输出误差总额却不超过300μV,从而实现了极高的信噪比。

    自动增益控制通过控制循环放大的次数来实现,循环放大次数取决于以下两个条件之一:第一,通过溢出判断电路OP3、OP4判断输出电压,如果输出已超过满刻度的1/2时,应停止再进行循环放大,否则,下次循环的输出直将溢出;第二,循环放大次数已超过规定的限值时(一般取n≤18,循环增益≤2 18,约110dB,说明被测信号太弱,已超出电路的处理能力,应停止循环。)

2 循环编码式A/D转换的实现

    利用电子开关S8和S9分别将基准电压+VR和-VR加到运放的反相输入端,可在放大阶段结束后接着对输出信号进行循环编码式A/D转换。A/D转换电路的参考基准电源VR=+5V,它同时也代表放大电路的满刻度值。主运放OP1的反相放大倍数为-1,同相放大倍数为2。

    在循环编码过程中,S7、S11和S6、S10两组开关轮流切换,以完成信号的循环传递。整个循环编码过程中的误差仍然是自动补偿的,这里不再赘述。在OP1的输出端接了一个极性检测器OP2.放大阶段结束时,运放OP1输出被用于循环放大后的信号(已保存于C1或C2中),极性检测器OP2同时产生一个二进制编码B0,它表示被编码电压的极性,即A/D转换结果的二进制编码的符号位。各编码周期的二进制编码输出位Bi及S8、S9的状态选择逻辑如下:

    Vo(i)>0时,取Bi=1,下次S8闭合,基准源+VR加到运放反相输入端,运放执行以下运算:

    Vo(i+1)=2Vo(i)-VR

    Vo(i)<0时,取Bi=0,下次S9闭合,基准源-VR加到运放反相输入端,则执行:

    Vo(i+1)=2Vo(i)+VR

    转换结果为二进制小数形式,Bo为二进制编码结果的符号位,B1至BN分别表示最高至最低位数值位。B0=1时,被测信号为正,B1至BN表示转换结果的原码;B0=0时,被测信号为负,B1至BN为二进反码形式。每转换一位需要一个控制周期,转换的总周期数决定了A/D转换的分辨率。需指出,上述循环编码A/D转换电路与普通逐次逼近式A/D转换在理论上是一致的(证明过程略)。

3 时序控制电路设计

    该电路还需设计一个时序控制电路与之配合,以产生各操作周期所必需的时钟节拍。一次完整操作最多需33个时钟节拍。图2给出了模拟开关的控制时序。可采用通用门器件或可编程门阵列构成的硬件时序逻辑电路来实现,也可应用微处理器控制产生所需时序。硬件实现图2的控制时序可获得较高的整机速度,约为几μs~μs。这主要取决于采样保持器及硬件时序逻辑电路的工作速度 。用微处理器产生所需时序时,完成图2所示的一个时钟节拍的电子开关状态设定约需数条至十数条指令周期,因而速度较低。因此只适用于500μs左右的低速数据采集系统。

    某离子浓度测定仪的循环放大与编码电路采用了8031单片机控制接口电路,应用P1口输出8位控制数据以控制S1~S11,T0、T1接8031的状态测试端。为提高程序执行效率,提高电路工作速度,程序设计采用简单的顺序执行方式,这种方式所实现的图2时序控制周期可能是非等时间间隔的,但这不会影响控制时序的执行性能。单片机系统时钟为6MHz,指令周期TCY=2μs,一次数据采集转换约需要390个TCY,即约需时780μs。

4 结束语

    在本文所述的自适应控制A/D转换编码电路中,A/D转换编码与信号放大共用一套电路,工作过程由数字电路或微处理器控制,结构简单,对信号的自适应能力强,可实现自动增益控制、失调与温漂的自动补偿、A/D转换循环编码控制,工作稳定可靠。在中速以下数据测量应用场合,该电路具备较高的性能价格比,特别适宜于各种单片机智能仪器、移动型微数字检测设备及虚拟仪器系统使用。在实际应用中,应注意采样保持误差对系统精度的影响。用微处理器生成控制时序时,由于周期较长,因而应选用低顶降率的采保器,采用其它硬件电路产生控制时序时,周期较短,则应选用低获取时间的采保器。

    在某离子浓度测定仪的应用实例中,其输入信号为30μV~200mV,A/D转换字长为12位,平均信号处理时间为600μs。OP1与OP2笔者选用AD707极低漂移运放(偏置电压15μV、偏置电压漂移0.1μV/℃、噪声0.1μVp-p、回转率0.1V/μs),OP3与OP4选用LM339普通集电极开路输出型比较器(失调2mV),A1与A2选有SMP-04EP经济型采保器(精度0.01%、获取时间7μs、顶降率为0.025μV/μs)。

关键字:自动增益控制  自适应控制  误差补偿  微处理器 编辑:赵思潇 引用地址:自适用控制A/D转换编码电路的设计与应用

上一篇:简化电路设计的高通过率、高精度ADC-AD974
下一篇:MAX146/147与TMS320F206的接口设计

推荐阅读最新更新时间:2023-10-12 20:11

基于LPC2106微处理器实现微型足球机器人控制系统的设计
以应用为中心的嵌入式系统,已经深入到生活的各个方面。相对于其它领域,智能机器人系统可以说是嵌入式系统应用最典型、最广泛的领域之一。本文对嵌入式系统在足够机器人底层控制系统中的应用进行研究和设计。 1 足球机器人系统 足球机器人是计算机视觉、模式识别、决策对策、自动控制、无线通信、智能体设计与电力传动、多智能体合作等多项技术的结合体,是一个典型的智能机器人系统。足球机器人比赛集高科技、娱乐、竞技于一体,虽历时不长,但已经成为国际上广泛开展的高技术对抗活动,引起社会广泛的关注。研究与开发足球机器人系统,参加机器人足球赛是研究智能机器人,跟踪国际高科技理论技术的理想切入点,同时也是嵌入式计算机系统理论联系实际的极富生命力的成长点。
[单片机]
基于LPC2106<font color='red'>微处理器</font>实现微型足球机器人控制系统的设计
ARM7TDMI微处理器和液晶显示模块的接口及应用
许多应用领域都采用无线方式进行数据传输,在无线抄表、工业数据采集、天线遥控、计算机遥测遥控,医疗卫生自动化、家庭自动化、安防、汽车仪表数据读取等各方面无线射频数传模块都有广泛的应用。 1 射频数传模块开发平台的构建 建立软硬件开发平台是模块开发的首要任务,比较了几种射频数传模块方案,最后决定采用由LPC900系列FLASH单片机和CC1000射频传输芯片为主芯片的开发方案。 1.1 主芯片简介 LPC2900 FLASH单片机是Philips公司推出的一款高性能、微功耗(完全掉电模式功耗低于1μA)、高速率(6倍于普通51单片机)、小封装的5l内核单片机,主要集成了字节方式的I2C总线、
[单片机]
ARM7TDMI<font color='red'>微处理器</font>和液晶显示模块的接口及应用
STC15F2K60S2芯片A/D转换器的应用
1.目的 在工业控制过程中,它是控制系统与微机之间不可缺少的接口方式。要实现自动控制,就要检测有关参数,A/D转换器,把检测到的电压或电流信号(模拟量)转换成计算机能够识别的等效数字量,这些数字量经过计算机处理后输出结果,通过D/A转换器变为电压或电流信号,送到执行机构,达到控制某种过程的目的。 2.与A/D转换相关的寄存器 与STC15系列单片机A/D转换相关的寄存器列于下表所示。 符号 描述 地址 位地址及其符号 MSB LSB 复位值 P1ASF P1 Analog Function Configure register 9DH P17ASF P16ASF P15
[单片机]
STC15F2K60S2芯片<font color='red'>A</font>/<font color='red'>D</font><font color='red'>转换</font>器的应用
A/D转换器AD6644在软件无线电中应用电路
在软件无线电的组建中,A/D和D/A起着关键作用,通常要求A/D转换器有足够的工作带宽(2GHz以上)和较高的采样速率(一般在60MHz以上),同时应有较高的A/D转换位数以提高动态范围。AD公司推出的新一代A/D转换器AD6644可以满足其要求。下面将对AD6644器件的特点、原理及应用进行介绍。 1主要特点 该芯片的主要特点如下: 保持采样率可达到65MHz; 采用完全差动模拟输入; 为了便于和数字ASIC接口,数字输出级可工作在+3.3V电源上; 内含基准电压源和跟踪/保持放大器; 采用小型表面贴装52脚封装(LQFP)。 AD6644的内部电路结构如图1所示。表
[应用]
微处理器的智能混浊度传感器
摘要:介绍了一种内置混浊度传感器、电导传感器、温度传感器、A/D转换器、微处理器(μP)和单线I/O接口的智能混浊度传感器APMS-10G,详细阐述了其测量原理及使用注意事项。 关键词:混浊度;电导;温度;APMS-KIT.exe软件 混浊度(turbidity)亦称不透明度,主要用于表示水或其他液体的不透明程度。当单色光通过含有悬浮粒子的液体时,悬浮粒子引起的光散射会使单色光的强度被衰减,其衰减量即可用来代表液体的混浊度。混浊度是个比值,其单位用NTU来表示。测量混浊度对于环境保护和日常生活具有重要意义。我国早在1986年就制定了《生活饮用水卫生标准》(GB5749-85),规定城市供水企业出厂饮用水的混浊度不得超过3NT
[传感技术]
理解和设计高速D/A转换器的宽带输出网络
今天,对于新IC元器件和技术的需求依然以令人吃惊的速度增长。商业和国防工业是需求增长的主要刺激因素。目前涉及半导体行业的大部分新规格都围绕着降低尺寸(size)、重量(weight)和功耗(power)而展开--即SWaP.在半导体行业,我们通过不断改进的技术以及更巧妙的设计来满足这些要求。然而,性能也是关键需求,尤其是GSPS领域的数模转换器(DAC)技术。为了跟上这一步伐,人们常常忽略了关键的模拟输出匹配网络。 为了提供更高的清晰度,通常认为高频是超过1 GHz的频率,高速是超过1 GSPS的速度;更重要的是,最终用户可能会在DAC之后集成一个放大器,因此可用信号便不那么依赖于信号电平,而更多地依赖噪声和保真度。本文将讨
[电源管理]
理解和设计高速<font color='red'>D</font>/<font color='red'>A</font><font color='red'>转换</font>器的宽带输出网络
初识单片机
他的前身是单片板,将CPU芯片,存储器芯片,I/O接口芯片,和简单的I /O设备(小键盘,LED显示器)等装配在一片印制电路板上,再配上监控程序(固化在ROM中),就构成了一台单板微型计算机(简称单板机)。单片机是在一片集成电路芯片上集成微处理器,存储器,I/O接口电路,从而形成了单芯片微型计算机,即单片机。MCS-51是英特尔公司推出的,CPU主频在 1MHZ~20MHZ。MSP430是TI公司的,ATMEL公司的单片机与MSC-51最接近,我国大陆宏晶公司推出兼容51的STC系列。与经典 MCS-51兼容的51单片机有51系列和5X系列(52,55,58,516等)。 单片机构成的四要素:CPU,
[单片机]
初识单片机
基于多模型自适应控制器的感应电机变频调速系统
摘要:针对变频调速矢量控制系统存在的参数鲁棒性差这一难点问题,首次将多模型自适应控制理论应用于感应电机变频调速系统中。提出了基于多模型自适应控制器的变频调速系统的新型控制结构与控制策略;在转子磁场定向的同步旋转系M_T中,分别建立了转速子系统、磁链子系统模型集并设计了相应的多模型控制器集,由此实现了感应电机变频调速系统多模型自适应控制。 关键词:多模型自适应控制器 参数鲁棒性 变频调速 矢量控制理论流传动的发展获得了质的飞跃,得到了与直流传动系统同样优良的静、动态性能。但是,矢量控制理论对电机参数的依赖性很大,而电机参数则具有一定的时变性。电机电阻存在的不确定性较大,达到标称值的150%;同时,电机电感的不确定性变化较快。矢
[传感技术]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved