MAX146/147与TMS320F206的接口设计

最新更新时间:2006-05-07来源: 国外电子元器件关键字:A/D  串口  干扰 手机看文章 扫描二维码
随时随地手机看文章

    摘要:介绍了MAXIM公司生产的MAX146/147的特点和工作方式,分析了其串口操作的具体步骤。给出了MAX146/147作为A/D转换器与CPU的接口设计以及它们之间的同步串行操作方法,同时介绍了滤波电路在减小电源干扰中的应用。

1 MAX146/147简介

MAX146/147是MAXIM公司生产的一种通用型A/D转换器。它具有8个单端输入通道或4个差动输入通道。采用单电源供电,其中MAX146的工作电压为2.7~3.6V、MAX147的工作电压为2.7~5.25V;MAX146还带有2.5V内置参考电压。它们的功耗较低:在3V/133kps时其电源电流为1.2mA,而在掉电模式时仅为1μA。另外,还与SPI/QSPI/Microwire/TMS320兼容,并具有4线串行接口;可用软件配置单/双极输入。

MAX146/147的管脚排列如图1所示,它具有20脚DIP/SSOP两种封装形式。其中MAX147的20个管脚功能如下:

1~8脚(CH0~CH7):模拟信号输入端;

9脚(COM):模拟信号输入的参考地;

10脚(SHDN):三态输入端;

11脚(VREF):参考缓冲输出/ADC参考输入;

12脚(REF ADJ):参考电压输入端;

13脚(AGND):模拟地;

14脚(DGND):数据地;

15脚(DOUT):串口数据输出;

16脚(SSTRB):串口急速输出;

17脚(DIN):串口数据输入;

18脚(CS):低有效片选信号;

19脚(SCLK):串行时钟输入;

20脚(VDD):5V电源输入。

2 MAX146/147的工作方式

2.1 控制字节的定义

MAX146/147的控制字节由八位组成,分别为bit7~bit1,具体功能如表1所列。

表1 MAX147控制字节定义

bit7 控制字节起始位,“1”有效,在此之间有,DIN上的“0”位均无效
bit6~bit4 通道选择位,设置采样输入脚
bit3 单极/双极选择位,bit3=1时,为单极转换模式,采样信号输入电压范围0~VREF;bit3=0时,双极转换模式,输入电压-VREF/2~+VREF/2
bit2 单端/差动选择位,bit2=1时,输入电压CMOS端作比较,bit2=0时,输入电压为所测两电压之差
bit1 bit0 bit1=0、bit0=0时,为全掉电模式,bit1=0、bit0=1时,速掉电模式(仅适合于MAX146),bit1=1、bit0=0时,为内部时钟模式,bit1=1、bit0=1为外部时钟模式

2.2 转换启动

工作时向DIN引脚输入被制字节即可启动转换。当CS脚为低电平时,在SCLK的每一个上升沿,数据从DIN输入一位到MAX146/147的内部转换寄存器。在CS变为低电平后,DIN上第一个到达的逻辑“1”即为控制字节的MSB,即开始启动转换信号。在此之前,DIN上“0”位均无效。

2.3 与CPU间的软件接口

    一般情况下应确保CPU的串行接口工作在标准模式,以保证CPU产生串行时钟,所选时钟频率应在100kHz~2MHz。其软件设计步骤如下:

(1)设置控制字节TB1为外部时钟模式的格式为:1xxxxx11B,其中xxxxx用来控制通道及转换模式;

(2)使CPU采用通用I/O线,并使CS为低;

(3)CPU发送TB1,同时接受一个字节RB1,并将其舍去;

(4)使CPU再发送一个字节(00h),同时再接受一字节RB2;

(5)让CPU再发送一字节(00h),同时再接受一字节RB3;

(6)为CS为高电平。

图2给出了这一过程的时序图。其中字节RB2、RB3包含了转换的结果,首位和属3位都为0。全部转换过程的时间主要由时钟的频率及二字节间的空闲时间来决定,为避免T/H的过多衰减,应保证其全部转换时间不超过120μs。

2.4 数据输出

在单极输入模式中,输出为无符号二进制数;在双极模式中,输出为二进制补码数,数据在时钟的下降沿输出,MSB在前。

2.5 时钟模式

MAX146/147可采用内部或外部时钟模式来进行连续逼近的转换,还可驱动模数转换的每一步。当控制字节的最后一位输入后,SSTRB升高一个时钟周期,并在12个时钟脉冲的每个下降沿将转换后的连续逼近的位发送到引脚上。当CS为高时,SSTFRB和DOUT为高阻状态,在CS的下降沿,SSTRB输出个逻辑低电平。整个转换过程须在几毫秒内完成,否则,转换的结果会被采样保持的电容所衰减。在串行时钟的频率低于100kHz时,应采用内部时钟模式,否则,采用间隔时间将超过120μs。

3 与TMS320F206的接口设计

TMS320F206与MAX147的外部时钟模式接口电路如图3所示。启动转换和经串口传送数据须经以下几个步骤:

(1)将TMS320F206的CL:KK和CLKR引脚以及MAX147的SCLK引脚设置为输入状态和上升沿有效,且都工作在外部时钟方式。

(2)在TMS320F206的XF引脚输出低电平以驱动MAX147的引脚,从而使MAX147可从DIN引脚接收到控制字节。

(3)向MAX146/147写入形如10001111的字节,以使MAX147可工作在单端、单极、外部时钟模式,000表示MAX146/147的第一管脚为模拟信号输入端。

(4)MAX147的SSTRB引脚的输出用于给TMS320F206的FSR引脚提供输入信号,SSTRB的下降沿表示转换正在进行,该下降沿同时可作为TMS320F206的帧同步信号来通知TMS320F206准备接收数据。

(5)在接下来的16个时钟信号的每一个下降沿,TMS320F206将读出转换结果的每一个数据补充位,与转换结果无关,应舍去。

(6)变CS为高电平,以使MAX147处于低功耗状态,直到下一次启动转换时,再使之变为低电平。

4 MAX146/147的参考接线方法

为使MAX46/147更好地工作,推荐使用印刷电路板,尽量不用漆包线连接。在印刷电路板布线时,应把数据线和模拟回路彼此分开,同时应禁止数据线和模拟线平行布置,也不能在MAX146/147的下面穿行数据线。

图4所示为推荐的接线方法。即将所有的模拟地接到输入端的模拟地的一个点上,将所有的数据地同样也接到一个点上,然后再连接在这两点,而其它的数字地则不能接到模拟输入的起始端点上。为减小地线上噪声,输入端的地线应尽量短,且电阻尽可能小。

电源线上的高频干扰也会影响A/D转换的正确转换工作,为此,图4中在MAX146/147的电源输入脚VDD与上述的模拟地输入起点间并联了两个电容,其值分别为1μF和0.1μF,同时应使电容的两个管脚尽量短,以减小从电源上引入干扰。在电源上干扰幅值很大时,可按图中所示在VDD和电源间再接一个10Ω的电阻,组成一个低通滤波器。

关键字:A/D  串口  干扰 编辑:赵思潇 引用地址:MAX146/147与TMS320F206的接口设计

上一篇:自适用控制A/D转换编码电路的设计与应用
下一篇:电压/频率和频率/电压转换器VF320

推荐阅读最新更新时间:2023-10-12 20:11

can转串口“485总线 和can”
一一产品简介 CAN232MB/CAN485MB 模块是工业总线改造,多种总线设备互连的关键性工具,是集成  1  路标准  CAN-bus  接口、1  路标准串行接口(RS-232/RS-485)的工业级  CAN-bus  与串行总线通讯连接器(网桥)。   模块接口定义 CAN232MB/CAN485MB模块各接口定义如图所示,使用端子及标准RS-232接口的接线的方式,便于工业现场使用。 图CAN232MB/CAN485MB  模块  RS-232  接口定义   CAN 总线连接 CAN232MB/CAN485MB集成1路CAN-bus通道,由插拔式接线端子引出,可以用于连接1个CAN
[嵌入式]
用单片机的串口驱动74LS165
  串行口是单片机与外界进行信息交换的工具, 利用单片机串口实现输入移位寄存器,只需用软件置REN=1(同时RI=0),即开始接收。数据字节在移位时钟脉冲的配合下,从低位至高位一位一位地接收下来并装入SBUF中,在启动接收过程(即写SCON,清RI位)开始后的第8个机器周期RI被置位。这一数据帧接收完毕,可进行下一帧的接收。   在模式0下,数据传输速率为fosc/12,fosc是时钟频率。时钟频率为12MHz时串行数据传输速率为lMbit/s,速度较快,故程序中对接收过程采取查询等待方式。如果有必要,应该用中断控制方式以提高程序速率。   需要特别注意,在工作模式0下,必须将SCON的SM2位清零。   单片机串口驱动74L
[单片机]
用单片机的<font color='red'>串口</font>驱动74LS165
基于TMS320DM6437的McBSP与EDMA实现串口通信
TMS320DM6437是专为高性能、低成本视频应用开发的,主频600 MHz,32位定点,采用达芬奇(DaVinci(TM))技术。该器件采用TI第3代超长指令集结构(VelociTI.3)的TMS320C64x+DSP内核,主频可达600 MHz,支持8个8位或4个16位并行MAC运算,峰值处理能力高达4 800MIPS。基于TMS320DM6437诸多特点,这里提出一种实现DSP与FPGA的双向数据交换设计方案,采用TMS320DM6437的McBSP和EDMA实现异步串口通信。  McBSP接口是全双工串行接口,提供收发数据双缓冲以处理连续的数据流,并可独立配置收发部分,接收和发送都可使用独立的帧信号和时钟源。TMS320
[嵌入式]
atmega16片上A/D程序-CVAVR程序
/***************************************************** File name : AD_on chip.c Chip type : ATmega16L Program type : Application Clock frequency : 4.000000 MHz Memory model : Small External SRAM size : 0 Da ta Stack size : 256 Function : 内部AD转换,数码管显示 *****************************
[单片机]
51单片机串口程序C语言版
这篇文章主要来介绍一下51单片机的串口,下面先来看一下与串口相关的寄存器。 图1 (该图来自51单片机技术文档) 下面来逐个介绍个寄存器。 SCON寄存器的SM1,SM2主要用来设置串行口的工作方式,具体对应关系见图2,REN:串行口接受使能位,当单片机要接受数据时该位应该置一,TB8:发送数据的第九位。在方式2或者方式3中TB8为发送的第九位数据。该位不是很常用,具体介绍请查看51单片机的技术文档,这里不多做介绍。TI:发送中断标志,由硬件在方式0串行发送第8位结束时置位,或在其它方式串行发送停止位的开始时置位,必须由软件清零。RI:接受中断标
[单片机]
51单片机<font color='red'>串口</font>程序C语言版
铁路干扰信号检测的一次成功演示
  关于通信信号研究所   通信信号研究所是铁道科学研究院(铁科院)下属的铁路通信信号技术领域具有科研、开发、生产、销售、服务整体功能的高科技企业。   通号所设有行车指挥自动化、车站计算机联锁、列车运行自动控制、编组站自动化、通信、光学、雷电及干扰防护和城市轨道交通7个专业事业部。拥有防雷、光学和无线通信三个全路中心试验室、十多个专业试验室和环行铁道通信信号系统综合试验基地,主要从事雷电干扰防护和城市轨道交通安全的研究。   主要测试问题   该研究所过去购买了一台DPO3000示波器,用来查看信号的波形,利用示波器FFT功能简单查看其频谱,非常不方便,看不到更多频谱细节。如果使用频谱分析仪,又不能同时看到时
[测试测量]
铁路<font color='red'>干扰</font>信号检测的一次成功演示
模拟串口的实现单片机IO口
用EBOX向我们的电力线调试模块发数据,但是要有一个控制接口,但是EBOX没有提供,所有只好用MCU来做伺服器。 一般的单片机都只有一个串口,所以必须模拟一个出来。 /* sbit TXD1 = P1^4; //define p14 as the analog transmit port sbit RXD1 = P1^2; //define p12 as the analog recieve port */ #include REG52.H #define uint unsigned int #define uchar unsigned cha
[单片机]
一种基于FFT的直扩通信系统中窄带干扰信号参数的估计方法
摘要:以DSSS/QPSK通信系统为背景,提出一种基于FFT的精确估计多个窄带干扰信号参数的方法。该方法对接收信号的频域FFT数据进行分析,只增加很少的计算量,就能准确估计出干扰的中心频率及宽度。用TMS320C5410 DSP对该方法进行了仿真实验,仿真结果显示了算法的可行性和有效性。 关键词:FFT DSSS DSP 窄带干扰 参数估计 现代通信系统设计中的一个重要课题是从宽带信号(如QPSK调制信号)中消除窄带干扰信号(NBI)的能力问题。直接序列扩展(DSSS)通信系统具有内在的抑制窄带干扰信号的能力。其接收信号和伪噪声(PN)序列进行互相关运算,将干扰扩展到DS信号所占有的整个频带,这样就降低了干扰电平,使干扰等效
[网络通信]
热门资源推荐
热门放大器推荐
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved