开关电流电路故障诊断技术的初步研究

最新更新时间:2007-07-09来源: 现代电子报关键字:采样  栅极  线性  激励 手机看文章 扫描二维码
随时随地手机看文章

开关电流(SI)技术是继开关电容(SC)技术之后出现的又一种新的模拟采样数据信号处理技术。在SC技术中,需要特殊的双层多晶硅工艺,而SI技术则不同,他是一种仅由MOS晶体管和MOS开关构成的采样数据网络,利用MOS晶体管在其栅极开路时通过存储在栅极氧化电容上的电荷维持其漏极电流的能力,电容精度要求并不严格,不需要线性浮地电容,与数字CMOS工艺相兼容,易于VLSI实现。此外,SI电路的信号用电流表示,对电压要求并不严格,电路可以在低压低功耗下工作。由于这些特点,SI技术引起了国内外学术界的广泛关注,并得到迅速发展[1-6]。由于SI技术得到广泛应用,而电子电路都可能有故障存在,这就提出一个新的课题:怎样对SI电路进行故障诊断。故障诊断是指,在已知网络的拓扑结构、输入激励信号和故障下的响应时,求解故障元件的物理位置和参数。要求求解的结果是惟一的,但有时却不能保证。SI测试技术已有所发展,故障诊断技术则刚刚开始起步,有不少困难存在,需要一一克服。

1开关电流基本功能块

1.1 电流存储单元

电流存储单元主要利用MOS管栅电容的电荷存储效应来实现电流存储功能。图1所示电路,TS1,TS2,TS3是由MOS管构成的开关,受互补时钟信号φ1,φ2的控制。在采样相φ1(处于高电平时),TSl,TS3闭合,TS2打开,对T1管栅源电容充电,建立电压Vgs,使流过T1管的电流Id=J+Jin;在保持相φ2(处于高电平时),TS1,TS3打开,TS2闭合,理想情况下,T1管栅电容Cgs无放电回路,因而Vgs保持不变,流过T1管的电流保持不变,Iout=-Iin,实现了电流存储功能。

1.2延迟单元

延迟单元包含两个级联的单晶体管电流存储单元和一个为取得全时钟周期输出信号而附加的任选附件输出级。在时钟周期的φ2相(跟图1相同),输入信号电流i(n-1)与晶体管T1中的第一个偏置电流相加。在下一个时钟周期(n)的φ1相,T1保持电流J+i(n-1),并且在第二个电流存储器T2中取样输出电流-i(n-1)。在时钟周期(n)的φ2相,T2保持电流J-i(n-1),而输出电流io1(n)=i(n-1)。在时钟周期(n)的φ1相和φ2相期间,任选级输出电流io2保持在i(n-1)。

1.3积分器模块

同相无耗积分器的传递函数为:

式中有3项,第一项对应于具有增益常数a/T的无耗连续时间同相积分器的频率响应;第二项(wT/2)/sin(wT/2)是取样数据积分器与理想响应的偏差;第三项e-jwT/2是剩余相位滞后。

积分器模块还有同相阻尼积分器,反相阻尼积分器,反相阻尼放大器,通用积分器等。


1.4 微分器模块
反相微分器的传递函数为:

式中,aT是增益常数,sin(wT/2)/(wT/2)是取样数据微分器响应与理想情况的偏差,e-jwT/2是剩余相位滞后。


微分器模块还有通用反相微分器,同相微分器,双线性z变换微分器等。

2开关电流的误差

2.1 影响故障诊断的误差

在SI电路中,各MOS管基本上是序贯的,电路中任何一处出现的故障都会序贯地通过电路,因此,可在输出端观察电路是否有故障发生。以电流监测为基础的模拟电路测试是通过比较已知的良好源和被测器件的电流特征标记进行判断。通过了严格的参数和功能检验的器件或通过仿真,可获得良好特征标记。

SI电路属于模拟电路,他的元件参数具有很大的离散性,即具有容差,由于"容差"事实上就是轻微的"故障"(只是尚在允许的范围内),其影响往往可与一个或几个元件的"大故障"等效,因此导致实际故障的模糊性,而无法惟一定位实际故障的物理位置。

SI电路的非理想性能主要是失配误差,输出一输入电导比误差,调整误差,电荷注入误差,噪声误差,而限制故障诊断精度和灵敏度的误差主要是由于有限的电导和电荷注入引起的[1-4]。本文将重点分析电荷注入误差。

2.2 电荷注入误差

对图1所示SI存储单元,电荷注入误差主要是由于开关晶体管TS3在关断时(时钟的下降沿),存储在该晶体管的沟道和衬底中的电荷流入存储晶体管T1栅源电容,导致Vgs变化所致。该电荷通过两种途径流入T1管的栅:通过沟道流入或通过栅源或栅漏重叠电容的馈通方式流入,即通常所说的时钟馈通效应。

设流人T1栅源电容的电荷电量为△Q,他是开关管TS3的栅衬底和栅源漏重叠电容所存储的总电荷的一部分,由他引起的栅源电压变化为△Verr,误差电流为△Ierr。设C为栅源等效电容,就有△Verr=△Q/C,则:

△Ierr=gm*△Verr

显然,gm,△Verr同输入电流和输出误差电流存在一定的关系。

(1)开关管TS3在关断期间所产生的电荷量是同其栅和源漏的电位差有关的,而TS3源漏电位的大小受输入信号的影响,即这部分电荷注入误差与信号有关;

(2)作为T1管的跨导gm,其非线性的特点(I-V特性为平方关系)导致了输出电流偏差。尤其是当输入信号较大时,偏差尤其严重,如图5所示。

因此,与信号无关的△Q将被转化为与信号相关的△I。尽管该误差与信号的大小有关,但追根究底,他是由晶体管的非线性造成的,因此被称为与信号无关的电荷注入误差。所以,在对电路进行改进时,只要有效地抑制由△Q引起的△Verr,就能避开这个问题。因为若△Verr=0,gm的大小对输出电流不产生任何影响。

以上分析表明,与信号有关的电荷注入误差是SI电路精度问题难以解决的根源。只要能有效抑制该误差,SI电路精度将得到很好的改善。在高速电路的应用中,由于要求存储管的跨导尽可能地大,栅积累电容尽可能地小,由△Ierr=gm*(△Q/C)可知,这将导致更大的电荷注入误差。因此,要消除该误差,就必须对SI电路基本结构进行改进。


3故障模型

在晶体管中有两种故障存在,一种是引起晶体管完全断路或短路/桥接的严重故障;另一种是产品未完全损坏,而是有缺陷,最初可能(或不可能)引起功能问题,但在预烧后很可能被损坏,这是非严重故障,在严重和非严重故障之间存在差异。对于开关电流单元,至今未研究后一种形式的故障,研究工作集中在纯粹的严重故障。使用的故障模型如图6所示,根据开关断开或闭合,能将其分成4种不同的严重故障:栅源短路(GSS);栅源短路(GDS);漏极开路(DOP);源极开路(SOP)。

SI电路就是由第二节所述的存储单元、延迟单元、积分器、微分器组成,构成了滤波器、A/D和D/A转换器、一般信号处理等,他的结构可用图7表示。

一个无故障源的SI电路,对应于某个规定的激励电流产生一个"标准电流",然后用图6的故障模型去模拟该电路中的故障。假定电路一次只有一个故障,简化故障性能的分析。这就是说,每个可能的故障依次注入被测电路的每个晶体管,再用规定的测试激励电流进行激励,可找到被测电路的"测试电流"。然后,可从标准电流中减去取样的测试电流,即为"误差电流"。从理论上讲,如果该电流为非零值,则被测电路有故障。同时,对应不同的"误差电流",可确定故障发生在电路的某个模块中。但显然,这有些过分简单化,因为SI的非理想性能、仿真模型的不准确性、对测试电路有不利影响的外界条件的变化等,都可能使误差电流不为零值,或出现交叉,致使不能惟一定位故障发生的模块。


4 结 语

目前,对开关电流电路进行故障诊断的难点在于:

(1)实际电路,由于SI的非理想性能,难以确定标准电流的值,就不好区分电路是否有故障;

(2)模拟仿真,对含故障模型的SI电路进行PSpice仿真时,仿真结果很不理想,难以用于故障诊断,这可能是由于MOS管的PSpice模型不够精确的原因。对SI电路,还可以用Hspice,Asiz进行仿真,这是以后研究的重点。

关键字:采样  栅极  线性  激励 编辑: 引用地址:开关电流电路故障诊断技术的初步研究

上一篇:高分子PTC热敏电阻工作原理介绍
下一篇:无锁相环电压全周期过零检测电路的仿真与设计

推荐阅读最新更新时间:2023-10-12 20:13

东芝发布条码扫描器用超小型封装的CCD线性图像传感器
东芝公司最近宣布,它将于2013 年9月发布一款全新的条码扫描器用CCD 线性图像传感器。 这款全新的传感器为TCD1256GAG,它的封装尺寸仅为东芝现有产品TCD1254GFG 的1/7,它的超小型封装非常接近于硅传感器晶片尺寸。 它将最大程度地减小扫描主板尺寸并扩大条码扫描器的应用领域。 TCD1256GAG 具有与东芝当前产品相匹配的基本性能和功能,其中包括电子快门功能,该功能可以实现在非饱和的环境照明条件下捕捉稳定的视频信号。 片上采样和保持电路简化了模拟信号处理并减小了布板面积。 主要特征 超小型封装 (采用 TSV 技术实现了芯片尺寸封装) 电子快门功能 芯片上采样和保持电路 应用 条码
[嵌入式]
CMOS线性敏感器阵列
TAOS公司的CMOS线性阵列除对光强信号比较敏感外,还可给出空间信息。这些器件中的线形光电二极管阵列的每个光电二极管均可敏感入射光,其输出为与积分时间和入射光强成正比的模拟或数字电压信号。该线性阵列器具有200、300和400DPI(每英寸的点数)三种类型,像素数从64~1280点,各型号的主要参数如表1所列。     TXL20X系列的点密度为200DPI,像元尺寸为120μm(高)×70μm(宽),像间距是125μm。为了简化操作,该器件只需串行输入(SI)信号和时钟(CLK)信号即可正常工作,它采用5V电源供电,其
[应用]
线性刻度欧姆表电路图1
线性刻度欧姆表电路图1
[模拟电子]
<font color='red'>线性</font>刻度欧姆表电路图1
AES音频数据流之间的异步采样率转换
数字视频和音频技术的广泛使用和不断革新,推动了音/视频广播 (AVB) 设备的快速发展。今天的 AVB 设备需要更高的图像质量、分辨率、更高的带宽和更多的音/视频处理通道,并且需要将从前彼此独立但实际上相互关联的功能(例如 HD-SDI、音频多路传输和解复用,以及异步采样率转换 (ASRC) )组合在一起。    Xilinx FPGA 通过不断地将集成度低、复杂且昂贵的ASSP芯片功能组合在一起,来满足客户对于集成度的需求。利用像 DSP48E 和 block RAM这样用来 实现复杂的滤波功能的芯片特性。ASRC作为一种ASSP芯片实现的功能,可以被集成到 Xilinx FPGA 中。    同样,免费提供的Xilinx 应用
[嵌入式]
浅谈低压差线性稳压器(LDO)的压差和功耗
便携产品电源设计需要系统级思维,在开发由电池供电的设备时,诸如手机、MP3、PDA、PMP、DSC等低功耗产品,如果电源系统设计不合理,则会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计和功率分配架构等。同样,在系统设计中,也要从节省电池能量的角度出发多加考虑。例如现在便携产品的处理器,一般都设有几个不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗。即当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式。 带有使能控制的低压差线性稳压器(LDO)是不错的选择。   低压差线性稳压器(LDO)的结构主要包括启动电路、恒流源偏置单元、使能电路、调整元
[电源管理]
替代非稳压线性变压器电路
替代非稳压线性变压器电路: 2W, 6V, 0.33A, 90–265 VAC输入的反激式电源电路
[电源管理]
替代非稳压<font color='red'>线性</font>变压器电路
功放线性化实现方法
线性是多模多载波无线网络的一个关键性能,这些网络包括宽带第三代(3G)和第四代(4G)蜂窝系统,包括减小了覆盖区域并且采用低发射功率架构的小型蜂窝基站。其亮点在于射频/微波功率放大器(PA)能以低成本和低系统功耗提供所需的性能。遗憾的是,功放的操作通常不是线性的,可工作在平均输出功率0.5W至60W的线性化功放的高性价比方案还没有实现。   为更好地理解这些RFPAL解决方案的用途和射频预失真(RFPD)技术的使用,本文将该方法与数字预失真(DPD)和回退等用于改善功放线性度的传统方法进行了比较。   没有功放是完美的。当馈入多频输入信号时,功放将提升有用信号,但也会产生无用的互调(IM)项(图1a)。当功放接近饱和时
[模拟电子]
功放<font color='red'>线性</font>化实现方法
高性能、低饱和线性稳压器的开发
  在整机设备不断实现小型化和省电化的今天,功耗小的低漏失线性稳压器(LDO)正成为开关电源用线性稳压器市场的主流。为了实现高性能和高速度,设备内部采用的微型计算机或数字信号处理器(DSP)工艺年年都在取得突飞猛进的进步和发展,与此同时,这些微型计算机或数字信号处理器必不可少的电源电压也越来越低。另外,不同制造工艺对应的电压各自存在差异,因此要求各种各样的供电电压。为解决这一问题,各生产厂商开始在开关电源设定中间电压,利用LDO稳压器提供LSI电源的新技术手段。另一方面,在电池设备中也使用大电流的LDO稳压器,力求最大限度地有效利用电池电压。   先使用DC/DC转换器从高输入电源取得5V左右电压,然后利用线性稳压器降压成3.
[医疗电子]
高性能、低饱和<font color='red'>线性</font>稳压器的开发
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved