基于极零点灵敏度的模拟电路可测性分析

最新更新时间:2007-11-20来源: 电子工程师关键字:相频  时域  线性  测量 手机看文章 扫描二维码
随时随地手机看文章

0引言

基于极零点灵敏度的分析方法与基于频域的灵敏度分析不同,不需要计算频域任意范围内的每一点的灵敏度,同时克服了分析幅频特性和相频特性的问题。其特点决定其在模拟电路分析和测试中有极大的应用空间。

模拟电路的测试设计在模拟电路设计成本中占据了极大的比例。与数字电路不同,模拟电路有大量的性能指标和电路参数,而且性能指标与参数之间又没有直接的线性关系,同时,性能指标和参数与系统的时域响应之问也不存在一一对应的关系。因此,即使是简单的电路,要确定其测试的方法和参数,也是一个相当复杂的问题。其中,一个重要的问题是,怎样确定可测量的参数和测量点,即可测性[1-3]。

在状态方程中,系统的可观测性为系统测试提供了很好的判断依据。然而,它只提供状态可测性,而系统的状态往往少于系统元件数量。因而,由状态方程不能确定电路的所有元件的可测性。

模拟电路的极零点对电路性能参数有极大的影响,特别是不同测试点对应的传递函数往往具有不同的零点。因而,电路极零点灵敏度可以用于电路可测性分析。

1 极零点灵敏度计算

设模拟电路的系统函数为H(s,h),h为与该网络某元件有关的参数,它可以是元件值,或是影响元件值的一些物理量。当参数h在标称值h0附加有微小变化△h=h-h0时[4],将H(s,h)在h0附近用泰勒级数展开,并忽略高次项,得到由△h引起的偏差为:

由此得到系统函数H(s,h)相对于参数h的未归一化灵敏度为:

网络函数H(s,h)相对于参数^的归一化灵敏度(简称灵敏度)为:

系统函数的一般形式为[5]:



将传递函数的分子和分母进行因式分解,得到如下形式:

式中:zi和pi分别是系统的零点和极点。

1.1 零点灵敏度

在系统零点zi处,与复频域s和参数h相关的系统函数H(s)等于0,即

参数h被视为独立变量,zi为非独立变量。基于链式规则,对式(6)求微分得到:

零点的灵敏度为:

1.2 极点灵敏度

由于系统矩阵在极点pi处变成奇异的,极点灵敏度不能像零点灵敏度一样计算。系统矩阵Y分解为下、上三角矩阵Y=LU。对应于参数h的微分得到:

将式(9)左乘X和右乘X的伴随矩阵(Xa)t,得到标量方程:

矢量定义为下式的解:

将上两式代入式(10),得到:

L是下三角矩阵,乘积(L/h)』。变为一个矢量,
其元素除最后一个为διnn/δh外,都为0,即(δL/δh),In=(διnn/δh)In。该矢量左乘(Xa)t,乘积中只有其最后一个元素Xan=1出现。而当U为上三角矩阵且unn=l时,δU/δh将变为零矢量。由上述步骤得到:

这是计算极点灵敏度的基本方程。将式(12)代人式(3),极点pi的灵敏度变为:

式(13)与式(8)类似。

通常,极零点灵敏度由规范化方式表示:

如果极点用实部和虚部给出,p=σ+jω,规范化灵敏度变为:



基于极零点灵敏度,也可以计算Q因子和极点频率灵敏度。

2 可测性度量

可测性度量定义为在电路拓扑结构和给定的测试点条件下,被测电路可解性度量的数量信息。因此,可测性度量可以衡量在某种测试条件下可由测试数据确定的电路元素的数目。显然,这是一种重要的参数。

被测电路的传递函数可以写成分解形式为:

式中:传递函数的直流增益K0,极点pi和零点zι是电路元素hi的函数;i=1,2,…,k;k是电路元素的数量,假定系统函数的极零点互异(它们都不相同)。

基于式(16)的可测性分为3个部分:

a)仅仅依赖于传递函数的极点,即仅仅依赖于电路拓扑结构,而与输入信号和电路(测试)节点无关。称这一部分可测性度量为Tp。可测性TP由下式给出:

式中:n为传递函数极点的数量。

传递函数极点数与电路的阶次相同,由下式给出:

式中:nLC为储能元件的总数;nC为独立电容环路的总数;nL为独立电感割集的总数。

b)依赖于传递函数的零点,称这一部分可测性度量为TZ,由下式给出:

式中,m为零点的数量。

c)依赖于传递函数的直流增益K0=a0/b0(s→0),称为Tk0:



如果直流增益是电路元素的函数,则c=1,否则,c=0。c的值可以使用直流灵敏度计算。如果某一电路节点的直流灵敏度不等于0,则c=1,否则c=0。

被测电路在一个节点的总的可测性度量Tt等于3个可测性度量的和,即



式(21)表明:被测电路在某一点的町测性度量依赖于该点的极点数目、零点数目和直流增益K0。

如果节点不止一个,可测性度量由下式给出:

式中:n为极点的数量;m1,m2,…,mt分别为节点1,2,…,ι的零点;c1,c2,…,ct分别为节点1,2,…,ι的直流增益;ι为电路节点的数目。

可测性可以用于指导测试节点选择。如果电路元素的数日等于极点数日和零点数目加1,就得到了最大可测性度量(所有电路元素都可识别)。如果电路有e个元件,在节点i处的可测性度量为Tt=r(r < e),这样仅有r个元素可以识别,而e-r个元素必须假定无故障(低可测性电路)。

3 极零点灵敏度分析实例

为了描述基于极零点分析的可测性度量,作为一个例子,现给出如图1所示的3-RC梯形电路。

基于改进节点分析,电路的系统方程可以写为:



在电路节点4、节点3、节点2(V1=Vi,V4=V0)的传递函数为:




由此可以得到传递函数的极点为:p1=-1981,p2=-1 555,p3=-3 247;在节点2,传递函数的零点为:z1=-382,z2=-2 618;在节点3,传递函数的零点为:z3=-1 000。相应的极零点灵敏度见表1。

由于直流增益与元件的取值无关(电容不能短路),因而Tk0=0。

由表1可知,Tp=3;在节点4,Tzm1=0;在节点3,Tzm2=1;在节点2,Tzm3=2。进一步分析可以发现:在节点4,Tt=3;在节点4和3处,Tt=4;在节点4和2处,Tt=5;在节点3和2处,Tt=6;在节点4、3和2处,Tt=6。也就是说,要能测试6个元素,至少必须选择节点3和2为测试点。

4 结束语

基于极零点灵敏度的可测性分析,为建立电路测试模型、确定测试点、分析测试方法提供了极大的方便。特别是当模拟和混合电路有大量的性能指标,在如何利用这些性能指标来实现测试时,显得尤为突出。

关键字:相频  时域  线性  测量 编辑: 引用地址:基于极零点灵敏度的模拟电路可测性分析

上一篇:一种带有软启动的精密CMOS带隙基准设计
下一篇:一种对高速脉冲边沿整形、调整的设计方案

推荐阅读最新更新时间:2023-10-12 20:13

热电动势对标准电阻器电阻数值测量误差的影响
电位差计法 图中,未知电阻Rx和电阻标准Rstd相串联,由电压源V给出电流I。 图电位差计法 用一个不会吸收很大电流的电位差计或者其它恰当的仪器,如数字电压表,来测量未知电阻和标准电阻上的压降。未知电阻器的电阻数值可以由已知电阻标准的数值确定如下: 式中: Rx ——未知电阻器的电阻数值; Rstd ——标准电阻器的电阻数值; Sx ——电位差计对Rx两端的电压降的设置值; Sstd——电位差计对Rstd两端的电压降的设置值。 在这里,基本的要求是,在测量期间流经两个电阻器的电流保持恒定。该电流的任何变化都会以相同的百分数反映为相应的测量误差。如果该电流源确实发生变化,并且具有随机性的本质,那么进行多次重复的测量,并对结果
[测试测量]
热电动势对标准电阻器电阻数值<font color='red'>测量</font>误差的影响
具 0.5ppm 线性度的 32 位 SAR ADC 提供 148dB 动态范围
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA) – 2017 年 4 月 3 日 – 不久前收购了凌力尔特公司 (Linear Technology Corporation) 的亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 宣布推出 LTC2500-32,这是一款超高精确度的 32 位逐次逼近寄存器型 (SAR) 模数转换器 (ADC)。LTC2500-32 是一种面向精准测量应用的新型和可行方法,该器件把凌力尔特专有 SAR ADC 架构的高准确度和速度与灵活的集成化数字滤波器相整合,以优化系统信号带宽并放宽模拟抗混叠滤波器要求。 LTC250
[模拟电子]
一款可以瞬时完成电路特性测量的小工具
Q 能否同时产生所有频率的频谱? A 当然可以,白噪声发生器就可以同时产生幅度相同的所有频率,更简单更快速! 电路中的噪声通常都是有害的,任何好电路都应该输出尽可能低的噪声。尽管如此,在某些情况下,一个特性明确且没有其他信号的噪声源就是所需的输出。 电路特性测量就是这种情况。许多电路的输出特性可通过扫描一定频率范围内的输入信号并观测设计的响应来测量。输入扫描可以由离散输入频率或扫频正弦波组成。干净的极低频率正弦波(低于10 Hz)难以产生。处理器、DAC和一些复杂的精密滤波可以产生相对干净的正弦波,但对于每个频率阶跃,系统必须稳定下来,使得包含许多频率的顺序全扫描
[模拟电子]
一款可以瞬时完成电路特性<font color='red'>测量</font>的小工具
e络盟新增 GW Instek 测试与测量仪器
全球 电子元器件与开发服务分销商 e络盟 宣布新增 GW Instek 测试与测量仪器,进一步扩展其产品组合的广度和深度。新增系列产品包括可编程电源、电气安全测试仪、信号源和功率分析仪,让客户能够以实惠价格获得卓越品质。 新增的GW Instek产品主要包括: ● APS-7050 可编程线性交流电源 - 通过 LAN 和 USB 接口提供 500 VA、310 V RMS、2.1 A 的输出率及45至500Hz 的频率范围。APS-7050能够产生复杂波形和瞬态波形,是验证严苛条件下电子产品运行的理想选择。典型应用包括 LED 行业和待机功耗的生产测试。 ● GPT-9603 电气安全测试仪 -用于测试 AC
[测试测量]
e络盟新增 GW Instek 测试与<font color='red'>测量</font>仪器
莱姆收购Danfysik, 巩固超高精度电流测量领先优势
      电流与电压测量元器件领先制造商莱姆(LEM)电子日前宣布收购丹麦公司Danfysik ACP A/S。此次收购做为一种战略补强收购,旨在加强LEM集团在超高精度电流测量领域的地位。       莱姆作为传感器领域的市场先导者,其核心产品为电流和电压传感器,被广泛应用于工业、铁路、能源与自动化以及汽车等领域。莱姆作为一家发展迅速的全球化的公司,在全球范围内拥有900名员工,在日内瓦(瑞士)、町田(日本)、北京(中国)设有生产中心。       Danfysik ACP(Advanced Current Products)是世界领先的超高精度电流传感器制造商,其产品主要针对医用扫描仪、精密工业电机控制器以
[模拟电子]
精准测量高范围电阻如何测?吉时利静电计轻松实现!
许多测试应用要求测量高级别材料的电阻率(面电阻率和体电阻率)。传统测量方法是对样本施加足够高的电压,测量流经样本的电流,然后利用欧姆定律(R=V/I)计算其电阻。由于高阻材料和器件产生很小的电流,很难准确进行测量,即使利用高精度仪器,材料中固有的背景电流也使得进行准确测量较为困难,吉时利 6517B 型静电计/高阻表旨在解决这些问题,并为各种材料和元件提供一致、可重复和精准的测量。 静电计用于精准测量高范围电阻 静电计是一种高度精密的直流多用测量仪表,不仅可以完成一般直流数字多用表的测量功能,凭借特殊的输入特性和高灵敏度,静电计也可胜任常规多用表力所不能及的电压,电流,电阻和电荷测量。它可以同时测量非常微弱的电流和高阻抗电压。
[测试测量]
精准<font color='red'>测量</font>高范围电阻如何测?吉时利静电计轻松实现!
空调漏电能否用钳表测量漏电流呢?
一、背景 在空调安装维修时,经常使用钳表测电流,使用方便快捷。在用钳表测电流时,只需要将档位打到适当量程,然后钳住被测电流的线路即可,如下图就是测火线电流的示例。那么,能否用钳表测量漏电流? 二、如何使用钳表测量漏电流? 测量时,直接用钳表将火零线同时夹住,若读数为零,说明线路无漏电,若读数不为零,那就说明回路中有漏电现象。 三、使用什么原理? 钳表测电流的依据是互感器原理,无漏电时,钳表同时夹火零线,两个电流大小相等、方向相反,所以它们产生的磁场也是大小相等、方向相反,两磁场完全抵消,所以钳表的铁芯中没有磁场,不会产生感应信号。当线路有漏电时,钳表依然同时钳火零线,但此时火线电流不等于零线电流,而是大于零线电流,所以火线
[嵌入式]
空调漏电能否用钳表<font color='red'>测量</font>漏电流呢?
基于89C51单片机的环境噪声测量
   1 引 言      环境噪声监测,是人类提高生活质量,加强环境保护的一个重要环节,在各大城市的繁华街区和居民区,已有大型环境噪声显示器竖立街头。但目前国内的便携式噪声测试仪,多为价格昂贵的进口专用设备,除卫生、计量等环保专业部门拥有外,无法作为民用品推广普及。本文介绍一种以89C51单片机为核心,采用V/F转换技术构成的低成本、便携式数字显示环境噪声测量仪。该仪器工作稳定、性能良好,经校验定标后能满足一般民用需要,可广泛应用于工矿企业、机关、学校等需要对环境噪声进行测量和控制的场合。 2 声压级的测量机理   人耳的听阈一般是20μPa,痛阈一般是200 Pa,其间相差107倍,这样宽广的声压范围很不
[应用]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved