Global360iot全球物联网观察

文章数:3163 被阅读:6087815

账号入驻

AI计算,为什么要用GPU?

最新更新时间:2024-01-09
    阅读数:

行业里通常会把半导体芯片分为数字芯片和模拟芯片。其中,数字芯片的市场规模占比较大,达到70%左右。

数字芯片,还可以进一步细分,分为:逻辑芯片、存储芯片以及微控制单元(MCU)。


本篇文章,将重点讲讲逻辑芯片。

逻辑芯片,其实说白了就是计算芯片。它包含了各种逻辑门电路,可以实现运算与逻辑判断功能,是最常见的芯片之一。

大家经常听说的 CPU、GPU、FPGA、ASIC ,全部都属于逻辑芯片。而 现在特别火爆的AI,用到的所谓“AI芯片 ,也主要是指它们


CPU(中央处理器

先说说大家最熟悉的CPU ,英文全称Central Processing Unit,中央处理器。

CPU

众所周知,CPU是计算机的心脏。

现代计算机,都是基于1940年代诞生的冯·诺依曼架构。在这个架构中,包括了运算器(也叫逻辑运算单元,ALU)、控制器(CU)、存储器、输入设备、输出设备等组成部分。

冯·诺依曼架构

数据来了,会先放到存储器。然后,控制器会从存储器拿到相应数据,再交给运算器进行运算。运算完成后,再把结果返回到存储器。

这个流程,还有一个更有逼格的叫法: “Fetch(取指 -Decode 译码 - Execute 执行 -Memory Access 访存 -Write Back 写回 ”。

大家看到了,运算器和控制器这两个核心功能,都是由CPU负责承担的。

具体来说, 运算器( 包括加法器、减法器、乘法器、除法器 ),负责执行算术和逻辑运算,是真正干活的。 控制器,负责从内存中读取指令、解码指令、执行指令,是指手画脚的。

除了运算器和控制器之外, CPU还包括时钟模块和寄存器(高速缓存)等组件。


时钟模块负责管理CPU的时间,为CPU提供稳定的时基。它通过周期性地发出信号,驱动CPU中的所有操作,调度各个模块的工作。

寄存器是CPU中的高速存储器,用于暂时保存指令和数据。 它的CPU与内存(RAM)之间的“缓冲”,速度比一般的内存更快,避免内存“拖累 CPU的工作。

寄存器的容量和存取性能,可以影响CPU到 对内存的访问次数,进而影响整个系统 的效率。后面我们讲存储芯片的时候,还会提到它。

CPU一般会基于指令集架构进行分类,包括x86架构和非x86架构。x86基本上都是复杂指令集( CISC ),而非x86基本为精简指令集( RISC)。

PC和大部分服务器用的是x86架构,英特尔和AMD公司占据主导地位。 非x86架构的类型比较多,这些年崛起速度很快,主要有ARM、MIPS、Power、RISC-V、Alpha等。以后会专门介绍。


GPU(图形处理器

再来看看GPU。

GPU 是显卡的核心部件 ,英文全名叫Graphics Processing Unit,图形处理单元(图形处理器)。

GPU并不能和显卡划等号。显卡除了GPU之外,还包括 显存、VRM稳压模块、MRAM芯片、总线、风扇、外围设备接口等。

显卡

1999年,英伟达( NVIDIA 公司率先提出了GPU的概念。

之所以要提出GPU,是因为90年代游戏和多媒体业务高速发展。这些业务给计算机的3D图形处理和渲染能力提出了更高的要求。传统CPU搞不定,所以引入了GPU,分担这方面的工作。

根据形态,GPU可分为独立GPU(dGPU,discrete/dedicated GPU)和集成GPU(iGPU,integrated GPU),也就是常说的独显、集显。

GPU也是计算芯片。所以,它和CPU一样,包括了运算器、控制器和寄存器等组件。

但是,因为GPU主要负责图形处理任务,所以,它的内部架构和CPU存在很大的不同。


如上图所示, CPU的内核(包括了ALU)数量比较少,最多只有几十个。但是, CPU有大量的缓存(Cache)和复杂的控制器(CU)

这样设计的原因,是因为CPU是一个通用处理器。作为计算机的主核心,它的任务非常复杂,既要应对不同类型的数据计算,还要响应人机交互。

复杂的条件和分支,还有任务之间的同步协调,会带来大量的 分支跳转和中断处理工作。它需要更大的缓存,保存各种任务状态,以降低任务切换时的时延。它也需要更复杂的控制器,进行逻辑控制和调度。

CPU的强项是管理和调度。真正干活的功能,反而不强(ALU占比大约5%~20%)。

如果我们把处理器看成是一个餐厅的话,CPU就像一个拥有几十名高级厨师的全能型餐厅。这个餐厅什么菜系都能做,但是,因为菜系多,所以需要花费大量的时间协调、配菜,上菜的速度相对比较慢。

而GPU则完全不同。

GPU为图形处理而生,任务非常明确且单一。它要做的,就是图形渲染。图形是由海量像素点组成的 ,属于类型高度统一、相互无依赖的大规模数据。

所以, GPU的任务,是在最短的时间里,完成 大量同质化数据的并行运算 。所谓调度和协调的“杂活”,反而很少。

并行计算,当然需要更多的核啊。

如前图所示, GPU的内核数,远远超过CPU,可以达到几千个甚至上万个(也因此被称为“众核”)。

RTX4090 有16384个 流处理器

GPU的核,称为 流式多处理器( Stream Multi-processor,SM ), 是一个独立的任务处理单元

在整个GPU中,会划分为多个流式处理区。每个处理区,包含数百个内核。每个内核,相当于一颗简化版的CPU,具备整数运算和浮点运算的功能,以及排队和结果收集功能。

GPU的控制器功能简单,缓存也比较少。它的ALU占比,可以达到80%以上。

虽然 GPU单核的处理能力弱于CPU,但是数量庞大,非常适合高强度并行计算。同等晶体管规模条件下,它的算力,反而比CPU更强。

还是以餐厅为例。 GPU就像一个拥有成千上万名初级厨师的单一型餐厅。它只适合做某种指定菜系。但是,因为厨师多,配菜简单,所以大家一起炒,上菜速度反而快。

CPU vs GPU


GPU与AI计算

大家都知道, 现在的AI计算,都在抢购GPU 。英伟达也因此赚得盆满钵满。为什么会这样呢?

原因很简单,因为 AI计算和图形计算一样,也包含了大量的高强度并行计算任务。

深度学习是目前最主流的人工智能算法。从过程来看,包括训练(training)和推理(inference)两个环节


在训练环节,通过投喂大量的数据,训练出一个复杂的神经网络模型。 在推理环节,利用训练好的模型,使用大量数据推理出各种结论。

训练环节由于涉及海量的训练数据,以及复杂的深度神经网络结构,所以需要的计算规模非常庞大,对芯片的算力性能要求比较高。而推理环节,对简单指定的重复计算和低延迟的要求很高。

它们所采用的具体算法,包括矩阵相乘、卷积、循环层、梯度运算等,分解为大量并行任务,可以有效缩短任务完成的时间。

GPU凭借自身强悍的并行计算能力以及内存带宽,可以很好地应对训练和推理任务,已经成为业界在深度学习领域的首选解决方案。

目前,大部分企业的AI训练,采用的是 英伟达的GPU集群。 如果进行合理优化, 一块GPU卡,可以提供相当于数十其至上百台CPU服务器的算力。

NVIDIA HGX A100 8 GPU 组件

不过,在推理环节,GPU的市场份额占比并没有那么高。具体原因我们后面会讲。

将GPU应用于图形之外的计算,最早源于2003年。

那一年,GPGPU(General Purpose computing on GPU,基于GPU的通用计算)的概念首次被提出。意指利用GPU的计算能力,在非图形处理领域进行更通用、更广泛的科学计算。

GPGPU在传统GPU的基础上,进行了进一步的优化设计,使之更适合高性能并行计算。

2009年,斯坦福的几位学者,首次展示了利用GPU训练深度神经网络的成果,引起了轰动。

几年后,2012年, 神经网络之父杰弗里·辛顿(Geoffrey Hinton 的两个学生——亚历克斯·克里切夫斯基(Alex Krizhevsky 、伊利亚·苏茨克沃(Ilya Sutskever ,利用“深度学习+GPU 的方案, 提出了深度神经网络AlexNet, 将识别成功率从74%提升到85%, 一举赢得Image Net挑战赛的冠军。

左起: 伊利亚·苏茨克沃, 亚历克斯·克里切夫斯基, 杰弗里·辛顿

这彻底引爆了“AI+GPU”的浪潮。英伟达公司迅速跟进,砸了大量的资源, 在三年时间里,将GPU性能提升了65倍。

除了硬刚算力之外,他们还积极构建围绕GPU的开发生态。他们建立了 基于自家GPU的CUDA (Compute Unified Device Architecture) 生态系统,提供完善的开发环境和方案,帮助开发人员更容易地使用GPU进行深度学习开发或高性能运算。

这些早期的精心布局,最终帮助英伟达在AIGC爆发时收获了巨大的红利。目前,他们市值高达1.22万亿美元(英特尔的近6倍),是名副其实的“AI无冕之王”。


那么,AI时代的计算,是不是GPU一家通吃呢?我们经常听说的FPGA和ASIC,好像也是不错的计算芯片。它们的区别和优势在哪里呢?

欢迎大家评论区补充~


参考文献:
1、《一文搞懂GPU的概念、工作原理》,开源LINUX;
2、《AI芯片架构体系综述》,知乎,Garvin Li;
3、《GPU、FPGA、ASIC加速器有什么区别? 》,知乎,胡说漫谈;
4、《带你深入了解GPU、FPGA和ASIC》,汽车产业前线观察;
5、《为什么GPU是AI时代的算力核心》,沐曦集成电路;
6、《一文通览自动驾驶三大主流芯片架构》,数字化转型;
7、《 AIGC算力全景与趋势报告 》,量子位;
8、百度百科、维基百科。


- END -


本文由全球物联网观察转载 自“鲜枣课堂” ,内容为作者独立观点,不代表全球物 联网 观察立场。仅供交流学习之用,如有任何疑问,敬请与我们联系info@gsi24.com


推荐关注
半导体行业的“资治通鉴”,汇聚半导体行业最新资讯,捕捉全球科技圈最新动态。专注于半导体晶圆制造、IC设计及封测、存储器、电子元器件等产业,华语圈百万半导体人睡前必读的“今日芯闻”。" data-weuitheme="light">


点“ 在看 ”为物联网产业加油!



 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: TI培训

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved