QbitAI量子位

文章数:10350 被阅读:146647018

账号入驻

200万上下文窗口创飞Gemini 1.5!微软来砸谷歌场子了(doge)

最新更新时间:2024-02-23
    阅读数:
西风 发自 凹非寺
量子位 | 公众号 QbitAI

谷歌刚刷新大模型上下文窗口长度记录,发布支持100万token的Gemini 1.5,微软就来砸场子了

推出大模型上下文窗口拉长新方法—— LongRoPE ,一口气将上下文拉至 2048k token ,也就是200多万!

并且1000步微调内,即可完成从短上下文到长上下文的扩展,同时 保持原来短上下文窗口性能 ,也就是说训练成本和时间又省了一大笔。

网友看不下去了,直呼“谷歌太惨了”:

此外值得一提的是,这次LongRoPE为纯华人团队,论文一作Yiran Ding,就读于杭州电子科技大学,于实习期间完成该项工作。

LongRoPE究竟长啥样?先来看一波测试效果。

拿LLaMA2和Mistral试试水

上下文窗口有效拉长,语言模型长文本理解能力可以得到很大提高。研究人员在 LLaMA2-7B Mistral-7B 上应用LongRoPE,从三个方面评估了其性能。

第一项测试是在长文档上评估扩展上下文语言模型的困惑度。

在256k以内的评估长度上,研究人员使用Proof-pile和PG19数据集来进行测试。

LongRoPE在4k-256k的文本长度上,整体上显示出困惑度下降的趋势,优于基准。

LongRoPE在Proof-pile数据集上的表现

即使在上下文窗口长度是标准长度16倍的条件下,LongRoPE-2048k模型在256k上下文长度内也超过了最新基线水平。

LongRoPE在PG19数据集上的表现

接下来上难度,从Books3数据集中随机选取20本书,每本 长度超2048k ,使用256k的滑动窗口。

研究人员观察到2048k的LLaMA2和Mistral之间性能差异显著。

在8k-128k的文本长度上二者均取得了与基线相当的或更优的困惑度。LLaMA2的困惑度随着文本长度的增加而逐渐下降,在1024k和2048k长度处略有上升,展示了较好的性能。

不过,Mistral在较短的长度上胜过基线,但当文本长度超过256k时,其困惑度急剧上升。研究人员分析,主要原因是对于Mistral的微调采用了与YaRN相同的设置,即使用16k长度的文本进行训练,导致了模型难以有效处理更长的文本。

第二项测试是用Passkey检索任务评估在海量无关文本中检索简单密钥的能力。

也就是在很长的文本中随机隐藏一个五位数的密码,让模型找出这个密码。

结果显示,现有模型的准确率在文本超度超128k后迅速下降到0。

而LLaMA2-2048k在4k-2048k文本范围内保持了90%以上的检索准确率,Mistral-2048k在1800k之前保持了100%的准确率,在2048k时准确率下降到60%。

第三项测试是在短4096上下文窗口长度内的标准大语言模型基准测试上评估。

这项测试,主要是为了检验模型上下文窗口被扩展后,在原有任务上的表现会不会受到负面影响。

LongRoPE-2048k模型在原始上下文窗口大小的任务上,与原始模型相比表现相当。

在TruthfulQA上,扩展后的Mistral比原始高出0.5%;LLaMA2性能略微下降,但在合理的范围内。

这是如何做到的?

三大法宝扩展上下文窗口

LongRoPE可以有效扩展模型上下文窗口关键有三:非均匀位置插值、渐进式扩展策略、短上下文窗口性能恢复。

非均匀位置插值

位置嵌入 (Positional Embeddings) 在Transformer架构中,用于帮助模型理解长句中token的顺序。

位置嵌入通常是预先定义的,并与模型的其他参数一起训练,当模型需要处理的文本长度超过其训练时的上下文窗口时,新出现的token的位置就需要新的位置嵌入。

而LongRoPE通过识别并利用位置嵌入中两个形式的非均匀性,即不同的RoPE维度和token位置,优化了位置嵌入,不用微调就能实现8倍的上下文窗口扩展。

这种方法通过有效的搜索算法来确定每个RoPE维度的最佳缩放因子,针对每个RoPE维度的旋转角进行了重新缩放,同时也考虑了token位置的影响。

这样,模型在扩展上下文窗口的同时,能够更好地保留关键的维度和位置信息,减少信息损失。

渐进式扩展策略

此外,LongRoPE采用了一种渐进式扩展的方法。研究人员先对预训练的大模型进行微调,使其适应256k长度的文本。

然后,在微调后模型基础上进行搜索,找到新的位置插值参数以重新缩放RoPE,最终实现2048k上下文窗口,这个过程无需额外微调。

短上下文窗口性能恢复

在RoPE (旋转位置编码) 中,超长上下文窗口会使得原始窗口内的维度被迫聚集在更小范围内,从而影响模型性能。

为此,研究人员调整了短上下文窗口RoPE的重缩放因子,使其与长上下文时不同,缓解了性能下降的问题。

通过这种动态调整机制,LongRoPE在处理极长文本和处理短文本时都表现良好。

LongRoPE发布后,部分网友认为RAG恐面临淘汰:


不过也有质疑的声音:

那么,你怎么看?

论文链接:https://arxiv.org/abs/2402.13753
参考链接:https://twitter.com/xiaohuggg/status/1760547784879722538

报名中!

2024年值得关注的AIGC企业&产品

量子位正在评选 2024年最值得关注的AIGC企业 2024年最值得期待的AIGC产品 两类奖项,欢迎 报名评选

评选报名 截至2024年3月31日

中国AIGC产业峰会 同步火热筹备中,了解更多请戳: 在这里,看见生成式AI的应用未来!中国AIGC产业峰会来啦!

商务合作请联络微信:18600164356 徐峰

活动合作请联络微信:18801103170 王琳玉


点这里 ???? 关注我,记得标星噢

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~


最新有关QbitAI量子位的文章

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: TI培训

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved