现在市面上的车型采用的自动变速器形式很多,除开最常见的就是以液力耦合器为基础的AT变速器,CVT无级变速器、DCT双离合变速器目前都在不少车型上能够见到,而今天我们要介绍的则是大家能接触到的,常见于小车和商用车的AMT变速器(对于较为特殊的序列式变速器我们将单独进行介绍)。
AMT的研发始于20世纪60年代,伊顿、戴姆勒·奔驰和斯堪尼亚等是研发AMT变速器的先驱。所谓AMT变速器是在普通手动变速器的基础上,主要改变机械变速器换档操纵部分(对变速箱壳体、拨叉、换挡轴、换挡指等进行优化设计),即在总体传动结构不变的情况下通过加装TCU控制的自动操纵系统来实现换挡的自动化。因此AMT实际上是由一个机器人系统来完成操作离合器和选档的两个动作。由于AMT能在现生产的机械变速箱基础上进行改造,生产继承性好,也就具备了操作方便、成本较低、经济性好(传动效率高)等优点。现在的AMT自动变速器类型也有不少,如果以执行器区分,常见的装车的有电-液,电动和电-气三种方式。
电-液执行器的AMT变速器
优点:技术成熟,在小车上应用广泛
缺点:液压装置对环境适应性较差,容易泄漏
以马瑞利速选器(SELESPEED)为代表的电-液执行器核心AMT变速器,已经在诸如奇瑞QQ3、瑞麒M1、雪佛兰赛欧等车型上广泛得到应用,它主要是在发动机控制单元ECU和变速器控制单元TCU的控制下,由液压泵驱动液压油提供动力,液压油进入选换挡机构和离合器阀体中,实现选挡、换挡和离合器的分离结合。
以电-液执行器为核心的AMT变速器结构示意图,浅色部分为机械变速器,深色部分为AMT执行器单元
以电-液执行器为核心的AMT变速器控制原理示意图
为整套电-液执行器提供液压动力的单元由直流电动机和齿轮泵组成,马瑞利的液压系统通常工作压力范围在38到52bar之间,控制单元通过继电器控制直流电机,当蓄能器压力低于38bar时,电器闭合,电动机开始工作,蓄能器压力升高到52bar时继电器断开,电动机停止工作。
执行器的动力单元组成:1、电源线缆,2、齿轮泵,3、电动机,4、支架,5、液压油回流,6、液压油输出(至液压油箱),7、油泵驱动轴
MG3上的AMT变速器液压系统储压罐(箭头所指右下角黑色圆形物体)
液压油进入执行器之后,通过电磁阀控制不同的油路,推动多个活塞实现选挡、换挡以及离合器的分离、结合,其中油路又分主油路、控制油路和回油路,主油路指指从动力单元到控制电磁阀之间的油路,控制油路是指从电磁阀到选换档组件压力腔的油路,而回油路是指从选换档组件压力腔到油壶之间的油路。
液压执行器内部油路示意图:红色油路为主油路;粉红的为控制油路;黄色的为回油路。
控制用的电磁阀由比例电磁阀和开关电磁阀组成:比例压力电磁阀(黄色)用来控制离合器执行元件;两个(EV1和EV2)比例流量电磁阀(橙色)来控制换档;电磁阀(粉色)用来控制选档
除开变速器控制单元TCU、发动机控制单元ECU和液压执行器本身之外,还有多个传感器提供发动机转速、加速/制动踏板位置、换挡杆位置、离合器位置、车速、液压系统油压等数据,经过高速运算,明确车辆和发动机所在的即时状态,为实施各项操作打好基础——电子控制单元TCU根据电子加速踏板位置、制动踏板状态、车速、发动机转速等等信息直接控制离合器和自动管理档位变化。在换档过程中,发动机电控单元ECU接到TCU通过CAN发来的换档信息,会同步地控制发动机扭矩(当离合器分离时扭矩下降,当离合器闭合,换档完成时扭矩增加),使整车在最佳工况下运行。
电-液执行器是研发历史较长的AMT变速器执行器,它在很多小车上已经得到了长时间的应用,技术已比较成熟,不过由于液压系统受到外界温度的影响很大,而且换挡机构本身工作次数多,一旦密封件出现问题就是出现液压油外泄,影响变速器正常工作的情况,同时液压系统的反应也相对较慢,不如电机驱动来得迅速。
MG3也采用了电-液执行器为核心的AMT变速器
[page]
目前采用马瑞利电-液执行器的AMT变速器在国内应用最为广泛,其中马瑞利已经和上汽成立合资公司,为马瑞利的AMT变速器提供配件,而奇瑞等自主企业也开始研制AMT变速器,出于成本因素,这类AMT变速器预计今后将更多出现在A00、A0级国产车型上面。
电动执行器的AMT变速器
优点:电动执行器的换挡、换挡、选挡速度优于电-液式执行器,体积和重量小
缺点:变速器型号少,应用不广
来自德国的舍弗勒集团旗下的卢克(LUK)和格特拉克集团都在国内生产采用电动执行器的AMT变速器产品,这类AMT变速器的特点是采用电机驱动执行器,电动机配合带动蜗轮蜗杆机构机构实现档位、离合器的位置切换。其优点是换挡、选挡速度优于电-液式执行器的AMT变速器,同时没有了执行器上的液压装置,结构更为紧凑简单,体积和重量更小,但目前变速器型号选择余地小,应用范围也相对有限。
LUK的电动执行器AMT变速器(ASG)
执行器外观(蓝色箭头方向为选挡方向)
执行器内部结构示意图
除开选挡和换挡之外,ASG变速器的离合器的结合分离也采用电机驱动,电机带动蜗杆推动液压主油缸,通过液压油管带动副油缸,副油缸推动离合器拨叉完成离合器的分离和结合。由于不用借助离合器踏板的机械结构完成这一系列动作,ASG的离合器伺服机构也更为紧凑。
电动执行器的AMT变速器在国内尚处于起步阶段,江西格特拉克目前已经开始生产采用电动执行器的6速AMT变速器,额定输入扭矩155牛·米,景逸1.5AMT和海马丘比特就采用这种变速器,此外,诸如重庆青山、南京奥联的国内企业也开始为江淮同悦、长城腾翼C30等一些自主品牌车型匹配此种电控执行器的AMT变速器。从长远看,只要解决电机的可靠性问题,电动执行器的AMT变速器还有很大的发展空间。
电-气执行器的AMT变速器
优点:大大提升驾驶的便利性,降低驾驶员的疲劳程度,减小机件的不必要磨损
缺点:需要专门供气机构,体积重量大
最后这类变速器可能大多数网友平时很少接触,因为普通的大客车都很少使用这类变速器,它们更多地出现在重卡和工程机械上面,尽管也以普通机械变速器为基础,但是它们的执行器由压缩空气推动,也就是下面介绍的电-气执行器的AMT变速器。
采用电-气执行器的重汽SmartShift变速器结构示意图
SmartShift变速器实物
相比其他乘用车所用的AMT变速器,这类电-气执行器的AMT变速器工作状况要复杂许多,因此需要由发动机传感器、油门踏板位置传感器、车辆制动状况、车辆载荷、道路地面状况等提供信息,电控单元综合以上信息选择最合适的挡位来完成换挡动作。它的最大特点就是用压缩空气推动主、副变速箱实现多达12-16个挡位的切换。
重汽的SmartShift变速器挡把,其中F为功能按钮,N空挡,“+”、“—”则为加减挡,C为爬行模式,E/P为经济/动力模式切换,M/A为手动/自动模式切换
这些专为商用车设计的AMT变速器大大降低了重型汽车驾驶的难度,同时也减小了驾驶员的劳动强度,应该说还是非常便利的,同时也避免了一些误操作对车辆机件造成的不必要磨损;而它的缺点就是需要压缩空气泵为执行器供气,重量颇重,占据了很大的空间,因此不具备在没有气源的中小型车辆上安装的条件。
国内的主要商用车变速器生产商如法士特、苏州采埃孚(ZF)、中国重汽、一汽等都先后研发了采用电控气动执行器的AMT变速器,虽然还存在稳定性和成本的一些问题,但是从现在物流和商用车的技术日渐提升的趋势看,这类重型AMT变速器依然有很大的应用空间。
结语:
选择一款自动变速器涉及到成本、动力和产品战略等多个方面,从电-液执行器的变速器使用效果来看,并不是特别理想,尤其是漏油和换挡的延迟为不少用户所诟病,从国内复杂的使用环境来看,电-液执行器已经很难满足需求了,在保障关键部件质量的情况下,电动执行器的AMT变速器更适合小车产品的使用,而对于排量更大的乘用车和商用车来说,研发更为稳定的电-气执行器的AMT变速器目前看还是较好的解决办法。此外,AMT的核心技术是单片机控制,电子技术及质量将直接决定AMT的性能与运行稳定性。
上一篇:博格华纳工厂准备就绪 国产DCT进入倒计时
下一篇:基于CAN总线的胎压监测系统在重型车辆上的应用
- 热门资源推荐
- 热门放大器推荐
- 使用 Analog Devices 的 LT1585CT-3.6 的参考设计
- LTC3835IDHC-1 高效降压转换器的典型应用电路
- 使用 Analog Devices 的 LTC3526EDC-2 的参考设计
- LT3513,一个完整的 5 输出 2MHz TFT-LCD 电源
- 使用 Microchip Technology 的 MIC2871YMK 的参考设计
- 小键盘-bilibil-iav35853182
- TC2015 的典型应用是具有关断和参考旁路的 50 mA、100 mA、150 mA CMOS LDO
- LTC3110IUF 1.8V/300mA 输出的典型应用电路,单个电容器从 2.5V 放电至 1V,并具有低至 0.3V 的备用电源
- 【训练营】【训练营】立创EDA-感应灯-659344A
- XRT82L34EVAL,基于 XRT82L34 线路接口单元的评估系统
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 直播已结束【最新 TI C2000实时控制芯片 — F28003X】
- 【MPS有奖评论】一起聊聊选型的那些过往
- 阅读TI Think.lnnovate 神级DIY系列博文,你来畅想我送礼!
- 成都站报名 | Keysight 高速互联技术研讨会
- 5G来袭 TE Connectivity 助你抢占消费电子市场先机
- Littelfuse第3期:新型SSA系列双端超低分流电阻器
- 任选下载有礼|《新概念模拟电路》全五册合集/《ADI 参考电路合集》
- 成都站报名 | Keysight 高速互联技术研讨会
- 免费尝鲜:热气体式加速度传感器来啦,拍摄冲击对比实验有好礼
- 有奖报名 | 安富利邀您参与2022国际工业博览会!(11月30日-12月4日,上海)