电机作为一个把电能往机械能转换的设备,一般都是工作在高速旋转的状态下的。然而如何让这匹脱缰的野马悬崖勒马让浪子回头,关键时刻说停就停的学问可不是想象中那么简单的。电机运行的知识看的多了,这里让我们来研究一下让电机停下来的门道。
文武之道,一张一弛。君子处事,能放能收。电机的控制同样如此,既要能让电机说走就走进入工作状态,也要能让电机当停则停听人指挥。如果电动汽车不能随时刹车、电梯不能随心所欲的停在指定楼层、起重机不能把吊起的货物稳定的悬挂在半空中,这将是怎样一副荒唐而混乱的景象?
如何使电机旋转起来,答案比较简单,给他电让他输出动能即可。但让它在关键时刻说停就停就没那么简单了,电机正转到高潮如何能马上停下来?
一般来说,电机的制动分为两种,没技术含量的和有技术含量的。没技术含量的就是机械制动简单粗暴,一个大刹车片或者抱闸就能解决问题。但是靠着摩擦摩擦来搞定制动毕竟不牢靠,刹车片磨损之后也许容易出危险。所以有技术含量的制动方式是什么呢?有技术含量的叫做电力制动,相对于暴力的机械制动,电力制动属于内家功夫。电力制动又要细分为:反接制动、能耗制动和再生制动。
反接制动:在电机上加上一个反向电动势,磁场旋转方向和转子方向相反,在反向力矩的作用下将电机停下来。此方法对控制要求较高,一不小心可能就反转了。需要注意一下。
能耗制动:在电机中通入直流电,以此消耗掉动能。单纯使用这个方法制动效果和精度也并不是很理想。
再生制动:把电机的电动机工况转变为发电机工况,把飞驰的动能再转化成电能储存好,节能低碳。这个方法在电动汽车中被广泛使用。
因此致远电子在设计MPT电机测试系统的时候,对于电机安全停机的设计也是选取了电机驱动器的能量回馈方案。在保持精度和响应时间的前提下还能回收能量,一石多鸟简直让人感动。单独进行馈电特性测试时,电机转换为输出电能的模式,这时候系统中的双向电源即将产生的该电能回馈回电网。此时功率分析仪同步对驱动器两端的电压电流和扭矩转速传感器的数据进行采集,馈电效率也能清晰的测试出来。
而在国标中,馈电特性测试是如何定义的呢?
试验时,被试驱动电机系统由原动机(测功机)拖动,处于馈电状态,根据实验目的和测量参数的不同,驱动电机控制器红做鱼设定的直流母线电压条件下,驱动电机在相应的工作转速和转矩负载下进行馈电试验。
负载转速值选取10个以上的测量点,选取点应包括以下特殊点:
额定工作转速点;
最高工作转速点;
持续功率对应的最低工作转速点;
其他特殊定义的工作点等。
被测转矩值选取10个以上的测量点,选取点应包括以下特殊点:
持续转矩数值处的点;
峰值转矩(或最大转矩)数值处的点;
持续功率曲线上的点;
峰值功率(或最大功率)曲线上的点;
其他特殊定义的工作点等。
记录馈电状态时驱动电机控制器的直流母线电压、直流母线电流、驱动电机各相的交流电压、交流电流,以及驱动电机轴端的转速和转矩等参数,同时计算获取电机及控制器功率、馈电效率等。
其实不只是电机的停机制动和馈能,对于现代电机生产与设计来说,在电机运行的各个环节均需要关注电机的控制性能。在了解电机稳态特性的同时也应多多关注电机的动态特性。对电机的转速扭矩响应、控制精度的把控同样也可由致远电子MPT电机测试系统来完成。一个优秀的电机既要做到说走就走,也要能够说停就停。这有赖于技术的进步,同样也源自我们工程师孜孜不倦的追求。
关键字:电机 输出
引用地址:
如何让电机说停就停?
推荐阅读最新更新时间:2024-07-25 19:28
伺服电机抖动怎么办?伺服电机快速有抖动什么原因引起的
伺服电机抖动,怎么办? 伺服电机为珠海运控的,当上方连杆没装上时,一切看起来正常;一旦连杆装上以后,电机就自己左右摇摆,参数设置半天也没整好。注:未接有减速器这个现象说明两个问题: 1、负载惯量远大于电机本身惯量; 2、两部分连接的刚度较低,使负载产生了谐振。 在这种情况下,系统只能调的很软,也就是刚性要调低,反应速度要减慢。具体的方法是关闭积分,同时降低位置环增益。 如要解决也需针对这两个问题下手: 1、推荐增加一个减速机,这样负载折算到电机的惯量就大大降低,日本伺服通常要求负载/电机惯量比小于5:1。 2、负载与减速机的连接要牢固,增加刚度。 以上两个措施要同时使用才好,如果负载本身刚度低就没办法了。在这个情况下,即使电机不震
[嵌入式]
步进电机加减速时间长短有什么不一样吗?
步进电机加减速时间长短有什么不一样吗?一般步进电机的加减速时间是多少? 步进电机是一种常用的电机类型,在很多应用场景中都有广泛的使用。与其他电机相比,步进电机有许多独特的优点,如定位精度高、运动平稳等特点。但是,步进电机的加减速时间对于其性能和应用也有很大影响。 步进电机的加减速时间是指在开始或结束运动时,电机的速度从静止到最终速度的变化所需的时间。这个时间通常与控制电路的设计和参数有关,也与电机自身的特性有关。不同的加减速时间会对电机的性能和应用产生不同的影响。 首先,加减速时间较长的步进电机会在开始或结束运动时需要较长时间才能到达目标速度,这会导致电机响应时间延迟。对于某些需要高速、精确控制的应用场景,如机器人、自动化生产线等
[嵌入式]
双路输出双闭环电流控制型DC/DC变换器的研究
引言 目前,多路输出电源普遍采用针对一路输出进行闭环的PWM控制方式,而其他的辅助输出采用间接稳压方式。由于只对主输出进行闭环控制,占空比的改变对辅助输出的负载影响较大,尤其是从轻载到满载变化时,交叉调节的性能变差(通常 5%)。如果对未闭环的辅助输出进行二次稳压(如线性稳压),则电路复杂,效率降低。对于两路输出DC/DC模块,大多采用正负电压联合采样技术,但对于负载不对称的用电环境下交叉调节性能变差。为了改善负载交错性能,国外有些公司只研发单路输出模块,然后由用户对模块进行组合,实现多路输出稳压,这样也可提高效率。 多年来,国外对多路输出电源进行了较深入的研究。但是,在文献中进行数学模型建立,数学推导、分析的较多,其
[电源管理]
异步电机的效率一般是多少_异步电机的等效电路有哪几种
异步电机的效率一般是多少 异步电动机的输出功率与输入功率之比。通常用百分数表示。 异步电动机的效率一般为75%-92%,影响电动机效率的因素有很多,根本原因是其内部损耗:效率=(输入功率-损耗功率)/输入功率。 异步电动机的效率也随负载的大小而变化。空载运行时效率为零,负载增加,效率随之增大,当负载为0.7~1倍额定负载时,效率最高,运行最经济。 异步电机的等效电路有哪几种 假定 1、疏忽空间和时刻的谐波 2、疏忽磁丰满 3、疏忽铁损 电机学中把转子侧的量折算到定子侧,折算的准则:坚持电机气隙磁通不变,可是这种办法不是仅有的,例如按定子总磁链安稳的准则进行折算,按转子总磁链安稳的准则
[嵌入式]
永磁电机设计原理与平衡方程分析
汽车由数千的零部件组成,为了充分描述车辆特性,将汽车的运动约束在一维空间中,同时简化汽车结构和受力情况,进行建模。
[嵌入式]
8、PIC32系列 输出比较-单比较匹配模式
1、PIC32参考资源 PIC32系列参考手册 中文版 链接地址:PIC32系列参考手册 第16章 输出比较 2、输出比较模块 输出比较模块主要用于在响应选定时基事件时产生单脉冲信号或一连串脉冲信号。 每个输出比较模块都包含以下特殊功能寄存器 (Special Function Register, SFR) OCxCON:OCMP 模块 “x” 的控制寄存器 OCxR:模块 “x” 的数据寄存器 OCxRS:模块 “x” 的辅助数据寄存器 T2CON:时基寄存器 TMR2:定时器寄存器 PR2:周期 2 寄存器 每个输出比较模块都具有以下工作模式: 单比较匹配模式:输出驱动为高电平,输出驱
[单片机]
基于SVM不对称六相永磁电机控制系统的设计方案
1.前言 永磁同步电动机(PMSM)因其高功率密度、高转矩和免维修等原因,广泛应用于高效驱动领域。六相永磁同步电动机发展了三相永磁同步电动机的结构,多应用于船舶电动推进等领域,它相对于普通永磁同步电动机而言有诸多优势,如船舶推进系统中,电流谐波最低次数要比一般三相电机高,降低了谐波幅值,提高了系统稳定性,减小转矩脉动,提高了电机工作效率,同时减小了转子谐波损耗,另外一旦发生缺相等故障,系统仍然可以继续运行。
随着电力电子技术的发展,电机变频调速系统在各种领域迅速发展和应用。直接转矩控制策略是在矢量控制策略之后最新兴起的变频调速技术,具有结构简单,动态响应快,鲁棒性强等优点。该技术最早是二十世纪80年代由德国教授Depenbroc
[嵌入式]
伺服电机的参数设置 伺服系统的常见故障与处理方法
在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考。 然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。 (1)位置比例增益 设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。 (2)位置前馈增益 设定位置环的前馈增益
[嵌入式]