HEV/EV电池管理系统中的标准放大器功能

发布者:HeavenlyLove最新更新时间:2019-09-23 来源: 电子产品世界关键字:EV  HEV  BMS  放大器 手机看文章 扫描二维码
随时随地手机看文章

混合动力电动汽车(HEV)和电动汽车(EV)之所以备受欢迎,是因为它们具有低(零)排放和低维护要求,同时提供了更高的效率和驱动性能。新的HEV/EV公司方兴未艾,而且现有的汽车制造商正大举投资HEV/EV市场,以争夺市场份额。

HEV/EV动力总成的核心在于系统。该系统从电网获取电力,将其存储在电池中(静止时),并从电池获取能量以转动电机并移动车辆。该系统主要包括四个子系统:车载充电器(OBC)、电池管理系统(BMS)、DC-DC转换器(DC/DC)以及逆变器和电机控制(IMC),如图1所示。在HEV/EV的BMS中经常忽略放大器的灵活性和成本效益。因此,本文将重点介绍BMS以及设计人员如何在系统中使用放大器。

1569202866283459.png

1:典型的带有OBCBMSDC/DC、逆变器和电机控制的HEV/EV系统图

BMS的作用是什么?

BMS维护和监控电池,包括有效和安全地充电和放电。BMS相对地平衡每个单体电池的电压和电荷,监控电池的健康状况,使电池保持安全的工作温度,并确保更长的电池寿命。BMS应该防止诸如电池反复过度放电,因为这将缩短电池寿命,或应防止过度充电,因为这可能会损坏电池并引起火灾或爆炸。HEV/EV中的电池是许多串联和并联的锂离子电池组合,可以满足所需的电压和能量。待完全充电后,单个锂离子电池的电压为4.2V,放电时接近2.8V。HEV/EV中充满电的电池电压范围为200V至800V。图2是典型的BMS框图。

1569203013805343.png

图2:BMS系统框图

让我们回顾一下BMS的主要功能。

电池电流感应

监控输入电池组的电流和输出电池组的电流至关重要。在主锂离子电池中,该电流的大小往往高达数百安培。霍尔传感器、感应传感器或分流电阻器上的隔离放大器通常用于电池冷侧(低电压)到热侧(高电压)电流感测。这些隔离电流感测解决方案可以具有模拟差分输出信号。隔离电流感测旨在保持热侧和冷侧分离,并将关于感测到的电流的模拟信息提供给主微控制器中的由低压电源供电的模数转换器(ADC)。这种电流感测通常不需要非常准确。运算放大器将差分信号转换为单端信号(以接地为参考),增加动态范围,并驱动ADC。在BMS中,通常使用电流分流监控器进行精确的热侧电流感测。

图3所示为不同电压域的带隔离放大器和运算放大器电路(用于带直流传递功能的电流感测)。分流电阻上产生的电压VSHUNT由一个隔离放大器放大,作为其隔离输出的差分输出信号VDIFF。运算放大器将差分信号VDIFF转换为单端信号OUT,并通过向信号施加2 V/V的增益来提高动态范围。隔离放大器偏移决定了初始电流感测精度。差分放大器的共模抑制比主要由电阻容差决定。

1569203127364107.png

图3:用于隔离电流感测的带运算放大器的隔离放大器

DC-DC转换器从HEV/EV中的主高压电池生成单独的48V电池子系统。这款48V电池子系统为空调、加热、制动系统和动力转向提供动力,并提供比使用铅酸电池的传统12 V电源轨更高的效率。48V子系统不含主电池那么高的电流负载,但仍然需要电流感测,这就是为何它有自己的本地BMS。在48V BMS中,非隔离精密电流分流监控器用于主电流感测,双向运算放大器电流感测电路用作冗余过流保护。图4所示为进行双向电流感测的运算放大器电路。

1569203213568299.png

图4:低侧双向电流感应运算放大器电路

电池电压感测

需要像电流一样监控电池的电压。在隔离电压检测中,电阻分压器将高电压从电池分压到放大器的共模输入范围。隔离放大器感测到分压电压,差分放大器配置中使用的运算放大器将隔离放大器中的差分输出信号转换为单端输出。若不需要隔离,则差分放大器配置中的运算放大器可以执行直接电压感测。

图5所示为采用隔离放大器和运算放大器的隔离电压感测。隔离放大器隔离热侧和冷侧,并输出增益为1的差分信号。运算放大器将差分信号转换为单端输出,并使ADC增益满足全动态范围。该电压被馈送到冷侧MCU中的ADC。

专为BMS设计的集成功率芯片可跟踪每个锂离子电池的电压并平衡电荷。以菊花链方式连接这些功率芯片可以同时测量所有锂离子电池的电压,平衡这些电池上的电压,并将此信息传递给MCU。

1569203288534188.png

图5:通过隔离放大器和运算放大器感测隔离电压

隔离漏流电流测量

正如我之前提到的那样,高压200至800V侧与车辆底盘接地和其他低压域(12 V和48 V)保持隔离。通过测试隔离中断测量电池电压和漏泄电流还将导致测量高压轨与底盘接地的低压之间的电阻或泄漏。汽车高压和隔离泄漏测量参考设计解释了测试隔离中断。它需要使用已知的电阻路径暂时短接隔离栅,如图6所示。

1569203362331019.png

图6:带运算放大器的隔离漏流电流测量电路

有必要从高压电池的正极或负极侧了解故障漏电流的路径。每当发生隔离中断时,继电器S1位于正极侧或继电器S2位于负极侧。将该已知的隔离电阻与测量的电阻进行比较可以确定通过隔离屏障的泄漏。

例如,当S1关闭时,如果在负极侧无泄漏,则ISO_POS电压将等于Vref。若在负极侧存在漏电流(隔离破坏),则ISO_POS电压将不等于Vref。由于漏电流流过Rps1、Rps2和Rs1、电池的正极侧和负极侧到低压侧接地,闭环增益不同。具有低输入偏置电流的运算放大器适用于此应用,因为连接到反相输入的阻抗可能非常高(在兆欧范围内)。

温度监测

HEV/EV需要高电压和高电流,这可能导致高功耗和快速温升。监测电池及其周围系统的温度非常有必要,以防止功耗过大。若故障导致高功耗,电池控制单元将断开电池,以防止发生火灾和爆炸等灾难性事件。

一种经济有效的温度感测解决方案是使用运算放大器缓冲来自与电阻串联的负温度系数(NTC)热敏电阻的信号。由于BMS和电池占位空间较大,因此整个系统的温度可能不均匀。这种不均匀的温度需要在整个BMS中放置多个温度感测单元。将来自这些单元的信号复用到单个ADC或MCU引脚需要信号调节。还需要缓冲和放大信号,以满足ADC的全动态范围。

图7说明了用于缓冲放大器同相放大器配置的运算放大器。具有合理偏移和失调漂移的低成本高压运算放大器适用于此应用。

1569203436431221.png

图7:使用NTC热敏电阻和运算放大器进行温度感测

联锁监测

联锁是一个电压和电流回路系统,流经HEV/EV系统中的一系列子系统,如图8所示。联锁从BMS启动并经过逆变器、DC/DC转换器、OBC再返回BMS,以监测任何篡改、打开高压系统或打开维护舱口的事件。汽车高压联锁参考设计解释了联锁系统如何断开高压线路以防止受伤。

联锁回路主要涉及感测不需要高精度测量的以脉冲传输的电流。紧凑的解决方案需求可能会导致基于仪表放大器的解决方案。最经济的解决方案是在差分放大器配置中使用带运算放大器和分立电阻的电流感测电路。联锁回路不是高电流回路;因此,您可以使用高值分流电阻,且不会有高功耗风险。安全和诊断功能需要冗余,以覆盖主系统发生故障时的情况。为检测所有可能的故障,可能存在更多需要二次电压和电流感测的情况,以及低成本解决方案变得更加可行的情况。

1569203546150746.png

图8:BMS中的联锁系统

结论

这些都是使用放大器的BMS中的标准功能,但根据系统设计,您使用运算放大器时可能会有更多功能。当出现新问题或异常问题且不存在集成解决方案时,基于运算放大器的解决方案变得更加实用。EV/HEV中的系统正在发展,且运算放大器提供快速、精确和灵活的解决方案的情况正变得越来越普遍。

参考文献

1.      德州仪器BMS应用页面。

2.      模拟工程师的电路说明书。


关键字:EV  HEV  BMS  放大器 引用地址:HEV/EV电池管理系统中的标准放大器功能

上一篇:转型出行公司?解读麦格纳最新产品技术
下一篇:“问诊”自动驾驶:安全等三大方向明晰

推荐阅读最新更新时间:2024-10-31 13:46

三级级联的低噪声放大器的设计
0 引言   在现代雷达接收机中,应用最广的结构是超外差结构。在该结构中,单片系统往往需要片外滤波器去除镜像信号,例如SAW滤波器,因而给系统的集成度带来影响。为了达到一定的镜像抑制比,而又不使用片外滤波器,通常使用镜像抑制混频器能提供60 dB左右的抑制度。但现代雷达接收机至少需要80 dB的抑制度,这就给镜像抑制混频器的设计增加了难度。   为解决该问题,研究工作主要集中在镜像抑制LNA的设计上。从文献中,可以看到通过LNA与陷波滤波器(notch filter)的连接,其单片LNA的抑制度分别达到20 dB和75 dB。本文结合雷达接收机中LNA的指标,通过设计电路结构提高抑制度,与后级的镜像抑制混频器连接达到了较高的镜像抑
[模拟电子]
三级级联的低噪声<font color='red'>放大器</font>的设计
如何测量RF功率放大器和手机的直流偏置电流
在移动电话市场上,手机电池寿命是一项任何客户都容易评估的技术指标。不足的电池寿命会招致用户的不满。因此,在设计手机及其关键部件时,通过降低功耗来延长电池寿命是重要的设计考虑。 但目前趋势却是沿着相反的方向:移动电话的功能在不断增加。目前已包括互联网接入,音频、视频,以及具有话音和数据的多模能力,这些功能都增加了电池消耗,缩短了运行时间。为满足市场要求,移动电话设计师开发了支持众多能力和多标准的手机,包括在一台手机上支持GSM、CDΜA、Wi-Fi、HSDPA、WCDΜA等。功能不过增加使所需的驱动功率也越大,即使一些功能不运行也需要消耗功率。 在较早的移动电话设计中,功耗主要决定于RF功率放大器、微处理器、背光和显示器。设计师
[测试测量]
如何测量RF功率<font color='red'>放大器</font>和手机的直流偏置电流
电动汽车动力电池管理系统均衡路线的启示
电池管理系统(BMS)作为电动汽车电池系统的一个重要构成,对电池组的电压、温度、电流、SOC、SOH等各项参数起到整体的把控。这其中,由于电池组是由若干单体电芯组成的,BMS还扮演着能量均衡的角色。 均衡的必要性 以目前的电池制造水平和工艺,电芯在生产过程中各个单体会存在细微的差别,也就是一致性问题。这种不一致性会使电芯的各项参数大相径庭。要想让它们组装在一起形成一个整体,则必须在作用过程中采用均衡的手段。好比木桶效应,弥补短板,才能最大程度提升性能。 另一方面,电芯在组成电池组装车使用过程中,也会由于自放电程度以及部位温度等原因导致单体不一致性的现象出现,单体电池的不一致性从而又影响电池组的充放电特性。 均衡
[汽车电子]
TDA7266双路音频立体声放大器电路图
TDA7266是双路音频立体声放大器,以MULTIWATT形式封装,专门为音乐设备和彩色电视机的高质量音频放大电路而设计。 一、特点 1、宽供电电压范围(3-18V) 2、短路保护 3、热保护 4、待机特性 5、静音功能 6、开关机静噪 7、外围元件少 二、内部框图 引脚 符 号 功 能 1 LO+ 左声道声音正极输出 2 LO- 左声道声音负极输出 3 VCC1 +16V供电 4 RIN 右声道声音输入 5 NC 空脚 6 MUTE 静音 7 ST-BY 待机 8 P-GND 地 9 S-GND 地 10 NC 空脚 11 NC 空脚 12 LIN 左声道声音输出 13 VCC2
[模拟电子]
TDA7266双路音频立体声<font color='red'>放大器</font>电路图
安华高推出集成前置和后置高抑制FBAR滤波器
  Avago Technologies(安华高科技)日前宣布,推出可以带来卓越性能的新微型化紧凑型高度集成GPS低噪声放大器(LNA, Low Noise Amplifier)产品,Avago的ALM-1812在一个微型化紧凑封装中集成一个低噪声放大器以及前置和后置高抑制滤波器,带来可以有效简化各种广泛GPS手机应用设计的完整、紧凑且高性能GPS射频前端模块产品。   Avago高度集成的ALM-1812低噪声放大器主要面向1.575 GHz频带设计,并采用4.5 x 2.2 x 1.0mm微型化MCOB封装,和分立式解决方案比较,可以节省印刷电路板占用空间达50%以上,集成FBAR滤波功能更使得ALM-1812可以达到
[模拟电子]
MAX9742 单/双电源供电、立体声、16W、D类放大器
MAX9742 单/双电源供电、立体声、16W、D类放大器 概述 MAX9742立体声D类音频功率放大器可为4Ω负载提供2 x 16W功率。MAX9742具有较高的效率(驱动8Ω负载时高达92%),可取消笨重的散热器并节省功耗。MAX9742采用20V至40V单电源或±10V至±20V双电源供电。其它特性还包括:全差分输入、全面的咔嗒和噼噗声抑制、低功耗关断模式以及外部可调的增益。短路保护和热过载保护防止出现故障时损坏器件。 MAX9742提供36引脚TQFN (6mm x 6mm x 0.8mm)封装,工作于-40°C至+85°C扩展级温度范围。 MAX9742,pdf datasheet : http://www
[模拟电子]
MAX9742 单/双电源供电、立体声、16W、D类<font color='red'>放大器</font>
具有6个十倍程动态范围的对数比率放大器
在光纤通信系统中,为了保证系统总性能,需要进行光功率监视。对数信号处理技术可以在很宽的动态范围内保持精确的测量。宽动态范围信号经过压缩之后,使用较低分辨率的测量系统便可节省成本。作为这种技术的一个实例,考虑用一只响应度为 0.5A/W 的光电二极管来将光能量转换为 100 nA~1mA 的电流。如果动态范围为40倍,误差为1%,则所要求的测量分辨率是 0.01%26;#215;10-4 ,即 1 ppm。这种测量需要一个 20 位 ADC。作为一种替代方法,你可以采用对数比率放大器将这种输入压缩到 0~4V 的范围内,然后使用一个 10 位 ADC,从而可大大降低系统成本。对基准电流编程可以使输出电压改变至所需的电平。在涉及到将动态
[模拟电子]
安森美AB类音频放大器用于便携和无线应用
2008 年 11 月 11 日 , 安森美半导体 ( ON Semiconductor ) 推出新一代的 AB 类音频放大器 NCP2991 ,专为便携和无线应用提供优异的音频性能而不会牺牲能效。 安森美半导体数字及消费产品部副总裁兼总经理 Manor Narayanan 说:“手机或便携媒体设备具备清晰、无噪声的音频输出,对于用户满意度至关重要。然而,硬件设计人员通常会遇到意料之外的源自音频系统的噪声问题。安森美半导体新的 AB 类放大器确保无噪声音频放大并抵御外部噪声源影响,保证高质量的音频性能。我们增加放大器的强固性,预期尽量减轻设计人员的工作,及尽力缩短设计周期。” N
[模拟电子]
安森美AB类音频<font color='red'>放大器</font>用于便携和无线应用
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved