毫米波雷达的工作原理及其应用

发布者:深沉思考最新更新时间:2020-04-07 关键字:毫米波  微波  雷达 手机看文章 扫描二维码
随时随地手机看文章

毫米波(millimeter wave )波长为 1~10 毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。

  

它具有以下主要特点:


•极宽的带宽:通常认为毫米波频率范围为 26.5~300GHz,带宽高达 273.5GHz。超过从直流到微波全部带宽的 10 倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达 135GHz,为微波以下各波段带宽之和的 5 倍。这在频率资源紧张的今天无疑极具吸引力。

  

•波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个 12cm 的天线,在 9.4GHz 时波束宽度为 18 度,而 94GHz 时波速宽度仅 1.8 度。因此可以分辨相距更近的小目标或者更为清晰地观察目标的细节。

  

•与激光相比:毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。

  

•和微波相比:毫米波元器件的尺寸要小得多。因此毫米波系统更容易小型化。

  

为此,它们在通信、雷达、制导、遥感技术、射电天文学和波谱学方面都有重大的意义。利用大气窗口的毫米波频率可实现大容量的卫星 - 地面通信或地面中继通信。利用毫米波天线的窄波束和低旁瓣性能可实现低仰角精密跟踪雷达和成像雷达。在远程导弹或航天器重返大气层时,需采用能顺利穿透等离子体的毫米波实现通信和制导。高分辨率的毫米波辐射计适用于气象参数的遥感。用毫米波和亚毫米波的射电天文望远镜探测宇宙空间的辐射波谱可以推断星际物质的成分。

  

毫米波雷达(Millimeter Wave Radar)的应用


表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能互补的系统。下面分述各种应用的进展情况。毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发射功率及天线增益都比微波系统高。下面是一些典型的应用实例。

  

空间目标识别雷达:它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使用大功率发射机以保证作用距离。例如一部工作于 35GHz 的空间目标识别雷达其天线直径达 36m。用行波管提供 10kw 的发射功率,可以拍摄远在 16,000km 处的卫星的照片。一部工作于 94GHz 的空间目标识别雷达的天线直径为 13.5m。当用回波管提供 20kw 的发射功率时,可以对 14400km 远处的目标进行高分辨率摄像。

  

汽车防撞雷达: 因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距离分辨率(达到米级),同时要能测速,且雷达的体积要尽可能小。所以采用以固态振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级,大大提高了距离分辨率。利用毫米波多普勒颇移大的特点得到精确的速度值。

  

直升飞机防控雷达: 现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的比率。因此直升飞机防控雷达必须能发现线径较细的高压架空电缆,需要采用分辨率较高的短波长雷达,实际多用 3mm 雷达。

  

精密跟踪雷达: 实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距离远而跟踪精度较差)和毫米波频段(跟踪精度高而作用距离较短),两者互补取得较好的效果。例如美国海军研制的双频精密跟踪雷达即有一部 9GHz、300kw 的发射机和一部 35GHz、13kw 的发射机及相应的接收系统,共用 2.4m 抛物面天线,已成功地跟踪了距水面 30m 高的目标,作用距离可达 27km。双额还带来了一个附加的好处:毫米波频率可作为隐蔽频率使用,提高雷达的抗干扰能力。

  

汽车主动防碰撞的工作原理


汽车防碰撞系统对提高汽车行驶安全性十分重要,该系统的研究一直倍受重视。从 1971 年开始,相继出现过超声波、激光、红外、微波等多种方式的主动汽车防碰撞系统,但是以上系统均存在一些不足,未能在汽车上大量推广应用。随着各国高速公路网的快速发展,恶性交通事故不断增加,为减少事故,先后采用行驶安全带、安全气囊等保护措施,但这些技术均为被动防护,不能从根本上解决问题。毫米波 RF 带宽大,分辨率高,天线部件尺寸小,能适应恶劣环境,所以毫米波雷达系统具有重量轻、体积小和全天候等特点,“主动汽车毫米波防碰撞雷达系统”成为近年来国际上研究与开发的热点,并已有产品开始投入市场,前景十分看好。

  

  

 

主动汽车防碰撞是以雷达测距、测速为基础的。防撞雷达系统实时监测车辆的前方,当有危险目标(如行驶前方停止或慢行的车辆)出现,雷达系统提前向司机发出报警,使司机及时作出反应,同时雷达输出信号到达汽车控制系统,根据情况进行自动刹车或减速。

  

毫米波防撞雷达系统有调频连续波(FMCW)雷达和脉冲雷达两种。对于脉冲雷达系统,当目标距离很近时,发射脉冲和接收脉冲之间的时间差非常小,这就要求系统采用高速信号处理技术,近距离脉冲雷达系统就变的十分复杂,成本也大幅上升。因而汽车毫米波雷达防撞系统常采用结构简单、成本较低、适合做近距离探测的调频连续波雷达体制。

  

射频收发前端是雷达系统的核心部件。国内外已经对前端进行了大量深入研究,并取得了长足的进展。已经研制出各种结构的前端,主要包括波导结构前端,微带结构前端以及前端的单片集成。国内研制的射频前端主要是波导结构前端。一个典型的射频前端主要包括线性 VCO、环行器和平衡混频器三部分。前端混频输出的中频信号经过中频放大送至后级数据处理部分。数据处理部分的基本目标是消除不必要信号(如杂波)和干扰信号,并对经过中频放大的混频信号进行处理,从信号频谱中提取目标距离和速度等信息。

  

毫米波 FMCW 雷达测距、测速原理


雷达系统通过天线向外发射一列连续调频毫米波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。一般调制信号三角波信号。反射波与发射波的形状相同,只是在时间上有一个延迟,发射信号与反射信号在某一时刻的频率差即为混频输出的中频信号频率,且目标距离与前端输出的中频频率成正比。如果反射信号来自一个相对运动的目标,则反射信号中包括一个由目标的相对运动所引起的多谱勒频移。根据多谱勒原理就可以计算出目标距离和目标相对运动速度。

  

已开发的车用主动防碰撞毫米波雷达


博世最近发表了采用 SiGe 技术的毫米波雷达 LRR(Long Range Rader)3。此次开发的毫米波雷达由 77GHz 频带的 MMIC(Monolithic Microwave Integrated Circuits)芯片组、4 根贴片天线以及专用 ASIC 构成。芯片组由发送和接收用的两个芯片组成,两芯片均使用了 SiGe 技术。毫米波雷达的可检测距离为 0.5m~250m。检测角度范围在 30m 远处为 30 度。

  

博世表示通过采用 SiGe 技术,可以比以往采用的 MMIC 技术降低成本。将来有望在车辆上配备两个毫米波雷达,并可追加功能。该公司在车辆前方配备了两个毫米波雷达,并公布了车辆试验结果——检测角度范围在 30m 远处扩大到了 60 度。

  

与只配备一个毫米波雷达相比,配备两个毫米波雷达提高了急转弯时的检测精度,可以更加准确地捕捉到前方车辆及路边的护栏等。实车试验中,在曲率半径为 35m 的道路上也可准确地识别前方车辆。该公司表示,该装备能够提高低速追踪的 ACC(Adaptive Cruise Control System)的准确度等。另外,将来还可以增加各种功能,比如通过检测路旁的护栏等来识别弯道的形状,与车辆的横摆力矩配合以防止侧滑等。

  

日立制作所最近开发出两种体积更小的车载毫米波雷达,使用 76GHz 频带,检测距离最长达 200m。

  

用于进行长距离检测的(检测范围 1m-127m)毫米波雷达,尺寸为横 100mm×纵 80mm×厚 30mm。与原来的机型相比,模块的厚度和体积大约分别减至以来的 1/3 和 1/4。另外,用于进行短距离检测的毫米波雷达(检测范围 0.1m—25m)主要通过改进天线,将检测角度从长距离检测雷达的±15 度扩大到了±35 度。

  

毫米波雷达主要由天线、高频电路及信号处理部分组成。日立制作所为了减小毫米波雷达的厚度,改进了高频电路及信号处理部分,通过将 MMIC 芯片封装在多层印刷线路板上,减小了体积,与原来使用单层印刷线路板的雷达相比,大幅提高了高频部件的封装密度。在提高微处理器性能的同时,通过增加混载内存的存储容量,将全部处理均集中在了 1 个微处理器上。由于减少了微处理器,所以信号处理部分生产的内部热量也随之减少,从而提高了部件的封装密度,这也为信号处理部分的小型化做出了贡献。


关键字:毫米波  微波  雷达 引用地址:毫米波雷达的工作原理及其应用

上一篇:Cognitive Pilot研发牙签尺寸雷达传感器 可用于自动驾驶汽车
下一篇:用于检测空气质量的车用空气质量传感器

推荐阅读最新更新时间:2024-11-05 15:22

华为的激光雷达布局的怎么样了?
华为进军汽车芯片领域早已不是什么新鲜事。去年,华为正式成立了智能汽车解决方案BU部门,今年11月,该部门正式并入消费者业务部门。此举也被视为是其智能汽车解决方案从2B走向2C。同时,华为再次强调了,华为不造整车,而是聚焦ICT技术,帮助车企造好车,造好车,成为智能网联汽车的增量部件提供商。 激光雷达、毫米波雷达和摄像头被视为是智能网联汽车的大三关键部件。但相比毫米波雷达和摄像头,激光雷达在目标轮廓测量、角度测量、光照稳定性、通用障碍物检出等方面都具有极佳的能力。因此,激光雷达也被视为是一个巨大的增量市场。 根据Yole的数据显示,虽然目前部署在拥有辅助驾驶功能汽车上的激光雷达市场规模仅有1亿多美元。但伴随着激光雷达产品的
[汽车电子]
华为的激光<font color='red'>雷达</font>布局的怎么样了?
基于FPGA的雷达脉冲压缩系统设计
脉冲压缩技术是指对雷达发射的宽脉冲信号进行调制(如线性调频、非线性调频、相位编码),并在接收端对回波宽脉冲信号进行脉冲压缩处理后得到窄脉冲的实现过程。脉冲压缩有效地解决了雷达作用距离与距离分辨率之间的矛盾,可以在保证雷达在一定作用距离下提高距离分辨率。 线性调频信号的脉冲压缩 脉冲压缩的过程是通过对接收信号s(t)与匹配滤波器的脉冲响应h(t)求卷积的方法实现的。而处理数字信号时,脉压过程是通过对回波序列s(n)与匹配滤波器的脉冲响应序列h(n)求卷积来实现的。匹配滤波器的输出为: (1) 依据式(1)的实现方法叫做时域相关法。根据傅里叶变换理论,时域卷积等效于频域相乘,因此,式(1)可以采用快速傅里叶变换(FFT)及反变换
[应用]
YITOA Micro Technology推出第二代汽车激光雷达MEMS振镜IC
据外媒报道,日本半导体和MEMS产品开发公司YITOA Micro Technology Corporation宣布开发出第二代汽车激光雷达MEMS振镜IC:CG0006AR,并将于2022年7月开始提供样品。 图片来源:YITOA Micro Technology
[汽车电子]
YITOA Micro Technology推出第二代汽车激光<font color='red'>雷达</font>MEMS振镜IC
毫米波通信的特点及前景
    毫米波的波长从10毫米至1毫米、频率从30吉赫(GHz)至300吉赫(GHz)的电磁波称为毫米波,利用毫米波进行通信的方法叫毫米波通信。毫米波通信分毫米波波导通信和毫米波无线电通信两大类。     传播特性   通常毫米波频段是指30GHz~300GHz,相应波长为1mm~10mm。毫米波通信就是指以毫米波作为传输信息的载体而进行的通信。目前绝大多数的应用研究集中在几个“大气窗口”频率和三个“衰减峰”频率上。   1)是一种典型的视距传输方式   毫米波属于甚高频段,它以直射波的方式在空间进行传播,波束很窄,具有良好的方向性。一方面,由于毫米波受大气吸收和降雨衰落影响严重,所以单跳通信距离较短;另一方面,由
[网络通信]
国外ADAS Tier1研究:4D毫米波雷达上量,CMS成新战场
国际Tier1 ADAS/AD产品矩阵完善,持续发力占据中国市场 从ADAS/AD产品矩阵来看,部分头部Tier1已基本完成了全产品矩阵的覆盖。 比如大陆,其最新的产品包括座舱监测系统CMS(OMS),配置为OMS 摄像头 +座舱 雷达 ,预计2024年发布;1550nm的长距 激光雷达 HRL131,测距300m以上,HFOV128°,VFOV28°,预计2024年量产; 超声波 雷达CUS320,测距0.1m-6m,计划2024年量产。 博世也完成了除CMS外的全ADAS/AD产品覆盖,其最新产品包括1550nm的长距激光雷达,已于2023年CES进行了实物展出,其测距大于200m,功耗小于20W;舱内监测系统IM
[汽车电子]
国外ADAS Tier1研究:4D<font color='red'>毫米波</font><font color='red'>雷达</font>上量,CMS成新战场
基于FPGA和DSP的雷达模目信号设计
摘要:在雷达信号处理分系统调试时,经常用到模目信号。为了获得实时多波束雷达模目信号,提出一种基于FPGA和DSP的产生方法,利用FPGA产生时序及控制,DSP实时计算出所需要的回波,这样即使在没有阵面数据的情况下,仍然能够调试信号处理部分。该设计模块使用简单方便,只需通过终端键盘输入参数,即可实时产生所期望的回波,非常适用于雷达研制前期和系统联试时查找问题,而且模块做在脉压板上,不需要单独的插件。 关键词:雷达模目信号;FPGA;DSP;回波 0 引言 雷达系统在研制过程中,各部分往往是并行的,在调试信号处理分系统时,如果天线没做好,就得不到阵面送下来的回波数据,这时调试就无法正常进行。为了解决这一问题,往往先设计一个模目信号
[工业控制]
基于FPGA和DSP的<font color='red'>雷达</font>模目信号设计
华为公开自动驾驶新专利:融合摄像装置和雷达两种传感器
国家知识产权局专利显示,华为4月5日公开了一项自动驾驶相关专利,其融合了摄像装置和雷达两种传感器。 转利文件显示,自动驾驶辅助系统包括摄像装置、至少一个雷达以及处理器,系统被配置可实现方法的技术方案,自动驾驶车辆包括上述的自动驾驶辅助系统。华为申请的方法融合了摄像装置和雷达这两种传感器,并将基于两种传感器所获得障碍物分布信息进行融合,融合后的车辆可行驶区域以概率的形式进行表示。从而可以全面地得到车辆周围的障碍物信息,避免了因为摄像装置的盲区或者雷达的探测范围所导致的探测盲区。 方法包括:使用神经网络对摄像装置获取的图像数据进行处理以得到障碍物的第一概率分布;根据雷达回波信号的回波时间和回波宽度获得所述障碍物的第
[汽车电子]
华为公开自动驾驶新专利:融合摄像装置和<font color='red'>雷达</font>两种传感器
禾赛携全新旗舰 360° 激光雷达 OT128 强势登陆 2024 德国 IAA 展
2024 年 9 月 16 日至 22 日,IAA TRANSPORTATION 2024 在德国汉诺威隆重举行,全球领先的激光雷达研发与制造企业禾赛科技携新一代旗舰级 360° 远距激光雷达 OT128 强势登陆,引领全球激光雷达行业创新与技术风向。 IAA TRANSPORTATION,即德国汉诺威国际交通运输博览会,是德国历史最悠久的专业展览会之一,也是全球最大的商用车展。IAA TRANSPORTATION 2024 迎来了全球 41 个国家和地区的 1,650 多家参展商,这一数字比上届增加了 20%,参观者将会与来自世界各地的商用车制造商、供应商、领先科技公司和研究机构共聚一堂。 作为全球车载激光雷达领域市占率
[汽车电子]
禾赛携全新旗舰 360° 激光<font color='red'>雷达</font> OT128 强势登陆 2024 德国 IAA 展
小广播
最新汽车电子文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved