ZLG致远电子基于不同形式接口开发高性能CAN接口卡

发布者:Huanle666最新更新时间:2021-08-24 来源: ZLG致远电子关键字:CAN  AI  总线通信  ZLG致远电子 手机看文章 扫描二维码
随时随地手机看文章

无人化行业迅速发展,CAN-bus在无人配送中发挥着重要的作用。ZLG致远电子针对目前无人行业存在的需求,提供系统的CAN-bus应用解决方案,助力无人化行业进程。


CAN-bus在无人化行业中的应用


随着云计算、AI、边缘计算等新兴技术的不断涌现与成熟普及,以电动化、智能化、网络化、共享化为趋势的“新四化”已成为各行业内的普遍共识。


近几年热度较高的自动驾驶,就是以无人智能化为核心的。目前,实现完全地自动驾驶除了相关政策限制,技术难度尤为困难。为此,各行业针对自身业务的应用场景,纷纷效仿实现无人化作业。例如,末端无人物流配送,园区通勤,矿区特种作业,景区游览车,无人农业机,无人清洁车等等。


实现无人化作业,包含:各类传感器、雷达定位、T-Box、线控底板、计算机平台、后台服务器等。其中,T-Box是负责记录整车的数据的,而整车架构目前依旧还是以CAN总线通讯为主,所以,无论前期测试还是正式落地,对CAN总线数据的读取和记录都尤为重要。


ZLG致远电子行业应用方案介绍


无人车辆CAN-bus数据的监控与记录


随着无人化行业进程不断推进,总线数据记录和实时定位需求显然尤为重要。同时,试验车和路试都需要不断进行路径和算法的优化。为了能够实时的获取小车CAN-bus的数据,了解无人配送小车的运行状态,ZLG致远电子针对此行业痛点,为行业用户提供如下方案。


基于CANDTU-400EWGR记录仪提供的方案,接下来简单介绍CAN记录仪的功能:


完整的记录CAN数据,方便分析整车运行情况以及遇到故障时溯源;


支持多种主流数据格式的转换,支持多种主流设备来进行数据回放,进行曲线分析;


记录CAN数据的时间精度在ms级别,带温补的RTC芯片和电池,温度变化较大时,能够保证时间偏差较小;


多通道独立记录CAN数据,且支持CAN数据的上下行,目前支持高达8路通道;


支持远程升级固件,NTP校时,远程配置设备;


长时间(一周到1个月)记录文件,数据存储容量大,标配32G SD卡,可达64G,支持长时间的记录。


无人车辆故障排查利器


无人车辆电机与各执行机构之间是通过CAN-bus总线通信的,当遇到故障时,如何快速的定位问题进行排查?如图所示,为此ZLG致远电子提供CANScope分析仪产品和便携式PA2000mini功率分析仪。针对底层线控故障问题,CANScope分析仪可从物理层、链路层和应用层快速定位故障,以便优化线控设计。基于电机效率和整机功耗控制需求,便携式PA2000mini功率分析仪可轻松进行上车测试。


CANScope总线综合分析仪是一款集示波器、网络分析仪、协议分析仪以及可靠性测试工具于一身的CAN总线终极利器,通过数据波形同步查看、眼图等各类分析软件插件,可以从物理层、数据链路层多层次分析定位故障,轻松找到故障原因,一站式解决CAN的所有问题。


PA2000mini是一款能进行移动便携测量的功率分析仪,在体积和重量得到进一步优化的同时,功率测量精度还能保证在0.05%,具有120G的超大容量存储,可以同步采集所有相。另外,PA2000mini功率分析仪体积小,带电池,可以持续工作3~4个小时,非常方便在无人配送小车测试现场进行电机效率等测试。


CAN接口扩展方案


目前无人配送部分执行部件与行走电机均采用CAN-bus现场总线通讯,而高端AI的IC和工控机都缺乏CAN接口的设计,例如ZLG致远电子的M1808。可以利用AI工控机上面多余的接口来扩展多路的CAN接口,从而实现小车各RCU单元的通信。基于此需求,介绍以下几种接口扩展的方案:


MiniPCIe接口CAN卡、PCIe接口CAN卡、以太网转CAN模块等系列产品是ZLG致远电子基于不同形式的接口开发的高性能CAN接口卡,配合AI工控机可以实现最多可实现8路电磁隔离3500VDC的CAN口扩展。另外,这些CAN卡支持任意系统的驱动,可在windows、Linux等系统下实现二次开发,接收报文能力高达14000帧/秒,属于工业级产品设计。


关键字:CAN  AI  总线通信  ZLG致远电子 引用地址:ZLG致远电子基于不同形式接口开发高性能CAN接口卡

上一篇:恩智浦与上汽零束携手,赋能软件定义汽车新时代
下一篇:新能源汽车高压连接器技术、设计及趋势

推荐阅读最新更新时间:2024-10-20 01:31

ZLG致远电子基于不同形式接口开发高性能CAN接口卡
无人化行业迅速发展, CAN -bus在无人配送中发挥着重要的作用。ZLG致远电子针对目前无人行业存在的需求,提供系统的CAN-bus应用解决方案,助力无人化行业进程。 CAN-bus在无人化行业中的应用 随着云计算、 AI 、边缘计算等新兴技术的不断涌现与成熟普及,以电动化、智能化、网络化、共享化为趋势的“新四化”已成为各行业内的普遍共识。 近几年热度较高的 自动驾驶 ,就是以无人智能化为核心的。目前,实现完全地自动驾驶除了相关政策限制,技术难度尤为困难。为此,各行业针对自身业务的应用场景,纷纷效仿实现无人化作业。例如,末端无人物流配送,园区通勤,矿区特种作业,景区游览车,无人农业机,无人清洁车等等。 实现无人化
[汽车电子]
CAN总线、以太网还是FPD链路:哪一种最适合车载通信
引言 1915 年,福特汽车公司把电灯和电子喇叭用于其T -型汽车。自那时起,汽车对于电气和电子系统的依赖便不断增加。初始系统往往都是局部和独立的,例如,一个控制车头灯的开关直接连接至电池。但在今天-,这些系统都相互连接在一起。当车头灯开启时,仪表盘照明、后视镜和其他系统可能都会转入新的工作状态。为了实现这些功能,各种系统必须彼此相互通信。随着汽车技术的发展,汽车拥有了许多网络,让这种通信成为可能。由于自动驾驶汽车的不断发展,对于汽车内部和汽车之间进行数据传输的需求日益增长。本文为您介绍三种汽车通信标准—控制器局域网(CAN) 、以太网和平板显示链路 (FPD-Link) ,并探讨每种接口最适合的系统。 CAN总线 CAN总线
[嵌入式]
<font color='red'>CAN</font><font color='red'>总线</font>、以太网还是FPD链路:哪一种最适合车载<font color='red'>通信</font>?
CAN总线在新能源汽车中的通信网络设计及应用分析
从事汽车相关行业的小伙伴们,都知道CAN总线,它是当今汽车各电控单元之间通信的总线标准,现在几乎所有的汽车厂家都选择使用CAN总线通信。CAN总线起初便是基于BOSCH公司为了解决汽车的电子控制单元增多带来的布线空间矛盾、汽车重量增加等诸多问题而诞生的。同时,CAN总线将汽车内部各电控单元之间连接成一个局域网络,实现了信息的共享,大大减少了汽车的线束。新能源汽车更多资讯在“优能工程师”,由易到难,由浅入深,全方位学习,维信馆主。 图 1 整车 CAN 网络的结构图 一、整车框图 BMS 控制网络只是整车通信网络的一小部分,而在电动汽车通信网络中,除了 CAN,还有其他协调的通信网络, 如 LIN、Ethernet、Flexr
[嵌入式]
<font color='red'>CAN</font><font color='red'>总线</font>在新能源汽车中的<font color='red'>通信</font>网络设计及应用分析
CAN总线通信协议是什么
CAN总线 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低功耗、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。 总结下,当一个节点要向其它节点发送数据时,该节点的CPU将要发送的数据和自己的标识符传送给本节点的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。CAN 芯片将数据根据协议组织成一定的报文格式发出,这时, 网上的其它节点处于接收状态。每个处于接收状态的节点对接收到的报文进行
[嵌入式]
<font color='red'>CAN</font><font color='red'>总线</font><font color='red'>通信</font>协议是什么
一文浅析CAN-FD总线通信应用
传统的车载CAN总线最高支持500 kbit/s的传输速率,每帧只能承载8 bytes的数据,由于传输速率和数据长度的限制,在自动驾驶和智能网联对网络通信的高要求背景下,使用传统 CAN 通信势必会导致总线负载率过高从而导致网络拥堵,传统CAN总线通信的瓶颈逐渐凸显。 2011年,为满足带宽和可靠性的需求,Bosch首次发布了 CAN-FD(CAN With Flexible Data-Rate)方案,CAN-FD继承了传统CAN总线的主要特性,使用改动较小的物理层,双线串行通信协议,依然基于非破坏性仲裁技术,分布式实时控制,可靠的错误处理和检测机制,在此基础上对带宽和数据长度进行优化,将逐步取代传统CAN成为下一代主流汽车总线
[嵌入式]
一文浅析<font color='red'>CAN</font>-FD<font color='red'>总线</font><font color='red'>通信</font>应用
CAN总线通信系统的研究与设计
0 引 言 众所周知,虽然目前8位单片机正逐渐被速度高,性能强的16位或32位微处理器所取代,但8位单片机仍以其低廉的价格、丰富的外围芯片以及众多的多功能产品而在低端应用市场占据主流地位。数字信号处理器(Digital Signal Processor,DSP)作为一种具有高速数字信号处理能力的新型单片机,在通信、自动控制、航天航空、军事、医疗等领域广泛应用。在比较复杂的测控系统中,如微机电动机保护装置,要求在毫秒级的短时间内对电动机实现实时保护和测量,所以对装置硬件系统的实时数据处理能力要求较高,而传统的基于单 CPU微处理器的方案己经难以胜任。因此,这里采用数字信号处理器与单片机构成的双CPU结构。由数字信号处理器完成多通道A
[单片机]
<font color='red'>CAN</font><font color='red'>总线</font><font color='red'>通信</font>系统的研究与设计
在LPC2131微控制器外部实现CAN总线通信设计
Philips公司的LPC213l是基于ARM7TDMI-S的高性能32位RISC微控制器。它具有ARM处理器的所有优点——低功耗、高性能和较为丰富的片上资源,但LPC2131内部没有集成CAN控制器,而无法利用CAN总线来进行通信。为了使得LPC2131能够利用CAN总线进行通信,可以通过外部扩展来实现其功能。目前,比较普通的方法是在LPC2131的外部采用CAN控制器设计CAN总线接口。LPC2131与CAN控制器的接口电路如图1所示。 这种方法中,LPC2131是通过GPIO口与CAN控制器SJA1000相连实现数据交互的。LPC2131通过寄存器IOSET/IOCLR来设定I/O口的高/低状态,虽然可以同时置位/拉低
[单片机]
在LPC2131微控制器外部实现<font color='red'>CAN</font><font color='red'>总线</font><font color='red'>通信</font>设计
应用最新的CAN总线增强功能,实现安全可靠的高速汽车通信
多年来,设计人员一直依靠控制器局域网 ( CAN ) 在汽车的各个子系统和 电子 控制单元 (ECU) 之间进行可靠的 通信 。然而,随着板载 网络 节点数量的增加,所需的数据吞吐量以及对更低延迟和更高级安全性的需求也在增加,所有这些都在严格的尺寸、重量和成本限制内完成。尽管如此,许多设计人员还是不愿意改变网络拓扑结构,而且由于CAN规范和相关IC解决方案的稳步改进,他们不必这样做。 迁移到另一种网络拓扑很困难,因为会损失先前的投资,并且随着设计人员的学习曲线向上移动,可能会出现设计延迟。但是,通过再次查看CAN规范增强功能可以避免这种情况,例如用于更高吞吐量的CAN灵活数据速率(FD),使用部分网络等技术来处理泄漏和干扰,使
[汽车电子]
应用最新的<font color='red'>CAN</font><font color='red'>总线</font>增强功能,实现安全可靠的高速汽车<font color='red'>通信</font>
小广播
最新汽车电子文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved