如果可以用更少的器件实现更多的汽车应用,既能减轻车重、降低成本,又能提高可靠性。这就是集成电动汽车(EV)和混合动力汽车(HEV)设计背后的理念。
什么是集成动力总成?
集成动力总成旨在将车载充电器(OBC)、高压直流/直流(HV DCDC)转换器、逆变器和配电单元(PDU)等终端设备结合到一起。机械、控制或动力总成级别均可进行集成,如图1所示。
图1:电动汽车典型架构概述
为什么动力总成集成有利于混合动力汽车/电动汽车?
集成动力总成终端设备组件能够实现以下优势:
提高功率密度。
提高可靠性。
优化成本。
简化设计和组装,并支持标准化和模块化。
高性能集成动力总成解决方案:电动汽车普及的关键
市场应用现状
实现集成动力总成的方法有很多。图2以车载充电器和高压直流/直流转换器集成为例,简要介绍了用于在结合动力总成、控制电路和机械组件时实现高功率密度的四种常见方法。它们分别是:
方法1:形成独立的系统。这种方法已不如几年前流行。
方法2:可以分为两个步骤:
直流/直流转换器和车载充电器共享机械外壳,但拥有各自独立的冷却系统。
同时共享外壳和冷却系统(最常选用的方法)。
方法3:进行控制级集成。这种方法正在演变为第4种方法。
方法4:相比于其他三种方法,此方法由于减少了电源电路中的电源开关和磁性元件,所以成本优势更大,但它的控制算法也更复杂。
图2:车载充电器和直流/直流转换器集成的四种常见方法
表1概括了目前市场上的集成架构。
表1:动力总成集成的三种成功实现
借助C2000实时微控制器(例如新发布的TMS320F280039C-Q1MCU),EV和HEV动力总成设计人员可针对车载充电器-功率因数校正、车载充电器-直流/直流转换器和高压转低压直流/直流应用采用分立和集成架构。此外,TMS320F280039C-Q1可通过单个MCU实现对多个功率级的实时控制管理,从而缩小动力总成的尺寸并降低成本。多个参考设计中体现了如何使用单个MCU实现多个动力总成子系统的集成。
表2展示了可帮助设计人员实现多种分立和集成动力总成拓扑的C2000 MCU产品系列。
表2:推荐用于不同级别的动力总成集成的C2000微控制器
动力总成集成方框图
图3为一个动力总成的方框图,该动力总成实现了电源开关共享和磁集成的架构。
图3:集成架构中的电源开关和磁性组件共享
如图3所示,车载充电器和高压直流/直流转换器都连接至高压电池,因此车载充电器和高压直流/直流转换器的全桥额定电压相同。这样,便可以通过全桥使得车载充电器和高压直流/直流转换器实现电源开关共享。
此外,将图3所示的两个变压器集成在一起还可以实现磁集成。这是因为它们在高压侧的额定电压相同,能够最终形成三端变压器。
性能提升
图4展示了如何通过内置降压转换器来帮助提升低压输出的性能。
图4:提升低压输出的性能
当这个集成拓扑在高压电池充电条件下工作时,高压输出可得到精确控制。但是,由于变压器的两个端子耦合在一起,所以低压输出的性能会受到限制。有一个简单的方法可以提升低压输出性能,那就是添加一个内置降压转换器。但这样做的代价就是会导致成本增加。
共享组件
像车载充电器和高压直流/直流转换器集成一样,车载充电器中的功率因数校正级和三个半桥的额定电压非常接近。如图5所示,这使得两个终端设备元器件共享的三个半桥能共享电源开关,从而降低成本并提升功率密度。
图5:动力总成集成设计中的组件共享
由于一个电机一般有三个绕组,因此也可以将这些绕组用作车载充电器中的功率因数校正电感器,借此实现磁集成。这也有助于降低设计成本和提高功率密度。
结束语
从低级别的机械集成到高级别的电子集成,集成的发展仍在继续。随着集成级别的提高,系统的复杂性也将增加。但是,每种架构变体都会带来不同的设计挑战,包括:
为进一步优化性能,必须精心设计磁集成。
采用集成系统时,控制算法会更加复杂。
设计高效的冷却系统,以适应更小型系统的散热需求。
灵活性是动力总成集成的关键。众多方法任您选择,您可以任意地探索各种级别的集成设计。
其他资源
阅读效率为98.6%且适用于HEV/EV车载充电器的6.6kW图腾柱PFC参考设计。
了解基于GaN的6.6kW双向车载充电器参考设计。
查看经过ASIL D等级功能安全认证的高速牵引和双向直流/直流转换参考设计。
上一篇:半固态电池商业化元年将至
下一篇:为什么说PHEV还有各种架构之分?其中又有何优缺点?
推荐阅读最新更新时间:2024-11-08 23:40
- ESP32开发板 ESP32-IOT-KIT全开源物联网开发板
- DC2349A,基于具有集成 VGA 的 LTC5586 6GHz 宽带 I/Q 解调器的演示板
- 基于L5972D的1.5A降压型开关稳压器(Vin = 4至36V,Vout = 1.235至Vin)
- LT3091ET7 线性稳压器用于输入电源跟踪的典型应用
- AM6TW-4809SH35Z 9V 6 瓦单路输出 DC/DC 转换器的典型应用
- FRDM-KW36:面向Kinetis® KW36/35 MCU的Freedom开发套件
- STEVAL-ILL015V3,基于具有诊断功能的 LED2472G HB LED 驱动器的评估板
- 使用 Diodes Incorporated 的 ZXSC380 的参考设计
- 具有 LDO 和节能功能的 SC410 2A EcoSpeed 降压稳压器的典型应用
- LTC3405AES6-1.8 同步降压型稳压器的典型应用电路
- EEworld版主招新啦!欢迎加入我们的队伍
- MPS有奖分享|电感应用中,哪个问题最令你头大?
- 艾睿电子直播:聚焦“TI FPD-Link III 汽车芯片组” ,汽车视频传输理想解决方案
- 罗彻斯特有奖调查:元器件日期代码限制是否仍然适用?70+份奖品先到先得!
- 创新驱动变革,R&S示波器助力功率电子测试
- 有奖直播报名:赛灵思和安富利专注嵌入式视觉应用,助力人工智能和汽车辅助驾驶!
- 点评《让世界更安全——TI Hercules开发实战手册》,精彩好礼等你拿!
- 学习 Mentor 白皮书《端到端车辆验证》,涨知识赢好礼!
- MSP430经典资料大搜集!赢给力TI 无线运动手表开发工具!!!
- EEWorld有奖主题征文来了~现金奖励等你来拿!